Tag Archives: sustainable energy

Thermal Energy Services and Technology Neutrality

Dr Binu Parthan from Sustainable Energy Associates writes on technology neutrality in thermal energy services, and how this can approach can be used to further access to clean thermal energy.

When the STEPs project was conceived in late 2012 and early 2013, one of the key aspects we emphasised was the principle of technology neutrality. We thought it important to include all possible energy conversion and end-use technologies that can provide thermal energy for cooking, space heating and other household, commercial and industrial uses. We were always clear about the role of LPG as a thermal energy fuel and technology to be included. This was also one of the arguments we used to encourage a technology neutral approach to thermal energy to the projects eventual funders DfID and EPSRC. Once the research project started in early 2014 the role of electric cooking also emerged slowly as an option worth considering. During the global survey we carried out during 2014-15 it emerged that electricity was already being used for thermal purposes by some practitioners in several operating contexts. In early 2015, I visited the Mekar Sari cooperative at the Cinta Mekar 5P project in Indonesia to understand the workings of the 5P model – a blog about this visit available here. During this visit I came across the extensive use of electric rice cookers which were being used alongside LPG. Almost all houses in Cinta Mekar was using efficient rice cookers to prepare rice and keep it warm.

A Household at Cinta Mekar, Indonesia Cooking with an Electric Rice Cooker (Credits: Sustainable Energy Associates)

The questions around electric cooking started recurring again during 2015. In mid-2015, at the Asia Clean Energy Forum at ADB in Manila where we presented the STEPs model, there were some interesting discussions about the need to include all possible technologies for cooking, including LPG and electricity. Later in 2015, DfID and Evidence on Demand published three interesting reports on electric cooking using solar photovoltaics and batteries in the African context. One of these publications (Leach and Oduro, 2015) also highlighted that majority of cooking is being using electricity in advanced African countries such as South Africa. Later in 2015 while I was in Nepal I realised that electric cooking option was already promoted by Intermediate Technology (Now renamed Practical Action) over 25 years ago in the 1990s with micro-hydro projects in a village called Ghandruk. The project used electric storage cookers – Bijuli Dekhchis for electric cooking in Ghandruk. The experience with electric cooking in Nepal did not turn out to be a success and perhaps was an idea ahead of time. My efforts to contact the people who ran the project to learn from their experience with the technology wasn’t successful as many of them had moved on or retired.

Rice Cooker and Electric Kettle being used by Households at Barpak in Nepal (Credits: Bir Bahadur Ghale)

There has also been questions raised regarding the health benefits of efficient cookstoves such as the reduction of pulmonary diseases due to reduced indoor emissions from improved cookstoves. LPG based cooking offers significant indoor emission reductions and electric cooking produces no indoor pollution at all. A publication in the Lancet in late 2016, which was highlighted by the BBC seemed to indicate no significant health benefits as a result of efficient biomass stoves (Mortimer. 2017).  I also see a renewed interest in electric cooking again especially with the availability of electromagnetic induction cookers which are available at lower prices of about US$ 20 in many locations in the developing world. Efficiency of rice cookers have also improved and many of the efficient rice cookers now use electro-magnetic induction. Induction cookers are about 14% more efficient than ordinary electric cookers and are increasingly available globally at competitive prices.

In this context, I heard about Bir Bahadur Ghale, owner of Barpak Rural Electrification Pvt. Ltd in Nepal – a community owned mini-grid operated by micro-hydro. After several efforts and with support from Dipti Vaghela at the Micro-Hydro Power Network, I was able to meet with Bir in December 2016.  The experience of Barpak Micro Hydro with electric cooking has been quite impressive. The mini-grid powered by hydro has offered a lower off-peak tariff from 8 AM to 5 PM encouraging households to cook with electricity during this period. These efforts resulted in about 2/3rd of the 1200 households served by the 133 kW hydro system now using electric cooking during the day. In addition the Barpak hydro also offers lower tariffs to industries during the day time, to encourage the use of electricity for productive uses. These efforts have resulted in the utilisation levels in the Barpak hydro to increase to 47% or 0.47 Plant Load Factor (PLF) which is almost 3 times the levels seen in similar hydro powered mini-grid systems in Nepal and elsewhere. Bir believes that the convenience of electric cooking, low-cost of cookers, reduction in drudgery of collecting firewood and the low off-peak tariffs offered by the Barpak hydro has been the reason behind the uptake of electric cooking. I believe this is a good approach which is valid in many locations around the world which addresses indoor air pollution, deforestation, provide a convenient and modern cooking alternative to households, especially women and improve the business viability of mini-grid operations. I am also beginning to notice more and more electric cooking appliances as I travel and recently in Laos I even see a shop which is specialising in electric cooking. So this market segment is getting quite interesting indeed with more product offerings that are affordable.

Electric Cooking Appliances for sale in Vientiane, Laos (Credits: Sustainable Energy Associates)

Also in a recent visit in summer of 207 to a village in the Ayeyarwady delta in Myanmar electrified by a gasifier powered mini-grid, I was able to see the widespread use of electric rice cookers and electric frying pans on a regular basis in homes. What was interesting was that despite the high local electricity tariffs at $ 0.44/kWh, the households preferring electric cooking to biomass based cooking.

Electric Cooking in rural Myanmar (Credits: Sustainable Energy Associates)

As more un-electrified areas get electrified and as cost of cooking with firewood and charcoal increases, we would expect LPG and electricity to increasingly displace biomass stoves. Where conditions for promotion of LPG exist such as local availability of natural gas, existence of LPG distribution networks, government programmes that offset the cost of access (like in Indonesia) etc. we are likely to see increased uptake of LPG. However many countries to do have domestic natural gas reserves and establishing a nation-wide LPG distribution network is capital intensive and government finances are often stretched. Therefore there is a tendency for LPG distribution networks to be limited to urban areas where there is a high concentration of users. Electric induction cooking can be an alternative in rural and decentralised areas which are electrified where products such as induction cooktops and electric rice cookers are available in the markets. With the right regulatory instruments that ensure tariffs that encourage electric cooking and electric space heating and with efficient and low-cost induction cooking devices, the share of electric cooking in developing countries will increase. While this does not call for shifting the focus away from efficient biomass cookstoves, the option of electric cooking needs to be in the menu of options for practitioners, development agencies and enterprises active in the energy access space. We will also need to think in terms of programme frameworks, financing, policy & regulation that promotes efficient electric cooking alongside LPG, efficient biomass stoves and other options.

Dr. Binu Parthan

References

Matthew Leach and Richard Oduro 2015, Preliminary design and analysis of a proposed solar and battery electric cooking concept: costs and pricing, Evidence on Demand, DOI: http://dx.doi.org/10.12774/eod_cr.november2015.leachm

Mortimer, K et al, 2017, A cleaner burning biomass-fuelled cookstove intervention toprevent pneumonia in children under 5 years old in rural Malawi (the Cooking and Pneumonia Study): a cluster randomised controlled trial, Lancet, 389: 167–75

Advertisements

Kitonyoni Solar Mini-grid and Integration of Thermal Energy Services

Binu Parthan from SEA writes on his recent visit to the Kitonyoni Solar Mini-Grid project, part of the University of Southampton’s efforts for the Energy for Development (E4D) project they lead.

The solar mini-grid at Kitonyoni near Machakos in Makueni County was financed by the UK government and commissioned in 2012 by the STEPs partner The Sustainable Energy Research Group at University of Southampton. The Kitonyoni Solar mini-grid is managed by Makueni County Solar Energy Co-op Society Ltd which is owned and managed by the community.

1

Management of the Solar Electric Cooperative and manager of the mini-grid business. Image: Sustainable Energy Associates

In July 2016, I travelled to Kitonyoni to visit the solar min-grid and meet with the community. While at Kitonyoni, I met with Joseph, Monicah, William and Shadrack from the management Makueni County Solar Energy Co-op Society Ltd and also with Stephen, the manager of the mini-grid and energy service business. With the community leaders and the manager of the mini-grid, I visited several businesses and households that were consuming electricity from the cooperative to understand the business model. The solar electric cooperative seems to be professionally managed and financially sustainable. They operate on a for-profit business basis and the financial accounts reveal that the operation is financially sustainable. The electricity cooperative uses a pre-paid card system for electricity sales and payments which seems to be working well. The electricity consumers are more conscious of energy use and payments and the cooperative is also happy with the upfront collections. The number of shops in the Kitonyoni market has significantly increased since the solar mini-grid was commissioned and the value of the land in the area has also almost tripled. However, the tariff charged by the solar electric cooperative is considerably higher than the public electricity utility but the community has been willing to pay a higher tariff due to better availability and reliability.

2

One of the new businesses established in the Kitonyoni market powered by the solar mini-grid. Image: Sustainable Energy Associates/span>

STEPs project team at University of Southampton had carried out a survey to examine the possibility of integrating thermal energy services into the existing electrical energy service business model. The results showed that 90% of the households in Kitonyoni use firewood for cooking which is available without cost to the community (Bahaj and Kanani, 2016). While the households spends over 5 hours to gather firewood, there is limited interest in switching to cleaner cooking options such as LPG which involve additional financial expenditure. The opportunity to integrate a solar thermal energy service along with the electricity service seems rather limited due to limited scope and demand for commercial fuels. The firewood is available freely in the area and LPG distribution networks are not available in the village.  Therefore currently, there does not seem to be a business case for introduction of an LPG franchise model and integrate the model into the solar electricity business. However some thoughts that I shared with the community were:

Since households and restaurants are cooking in separate rooms than their houses and as there is a preference for community schemes, will a community electric cooking scheme succeed? This may be relevant as on most days the battery bank of the solar mini-grid seems to be fully charged in the early afternoon and this could provide an opportunity for a central cluster of electric induction cookers which people can use to cook on a pay per use basis(similar to battery charging) to the cooperative.

It is possible that people may opt for efficient Cookstoves/Jikos if available on a hire-purchase/PAYG basis and reduce the amount of firewood to be collected resulting in time savings. An efficient Jiko will cost 45 $ which could be offered on a loan basis with daily/weekly/monthly payments to people by the cooperative for 6 months to 1 year tenure. These funds could be revolved over the time period to reach other members.

A differential tariff with a lower tier-tariff for the shops and establishments that use electricity during the day will likely improve the revenue model of the cooperative and can increase the utilisation levels. Such a tariff regime could allow the use of induction electric cookers at households during the day. Such a development could result in increasing sales and revenue and improving the business viability.

3

Cooking using firewood and a metallic stove in Kitonyoni. Image: Sustainable Energy Associates

Therefore the technology options for thermal energy and cooking in Kitonyoni is electric cooking or efficient Cookstoves with the possible business models of pay-per-use or hire-purchase respectively. A differential tariff with lower off-peak tariff could also allow electric cooking during the day time and improve the business model. These options are not entirely obvious and needs to be investigated and defined. This approach will certainly face stiff competition from free biomass availability and availability of free time for fire-wood collection.

Dr. Binu Parthan

“Fuel Switching” To LPG: Substituting More Sustainable Fuels

‘Fuel switching’ has achieved some prominence in the sustainable energy for development discourse. Fuel switching is usually used to define situations where end-users transition from less-sustainable traditional fuels, such as fossil fuels like kerosene or paraffin, or traditional woodfuels, to more sustainable sources of fuel used for the same purpose. For example, kerosene for lighting may be substituted for electric lighting from a solar home system, or woodfuels used for cooking or heating may be substituted for LPG.

Fuel switching has been particularly put forward when relating to LPG uptake in developing countries, as LPG fuel has significant benefits over other modes of fuel used for similar purposes. These can include superior combustion properties, producing less indoor air pollution with the attendant co-benefits in terms of public health. Fuel switching can lead to a reduced burden on the end-user for energy resource acquisition, such as alleviating the time burden of collecting woodfuels or purchasing charcoal/kerosene.

STEPs LPG Blog 1 Graph 1

Time spent collecting wood fuels per day by women in different African countries, 1990-2003, World Bank 2006. Source: http://ourworldindata.org/data/environmental-change/indoor-air-pollution/

Fuel switching (combined with the use of efficient cookstoves) can also lead to improved performance resulting from the use of a more energy-dense fuel, such as reduced cooking times.

STEPs LPG Blog 1 Graph 2

A comparison of different types of clean cookstoves and their relative energy consumptions and times to boil water. Source: http://www.lowtechmagazine.com/2014/06/thermal-efficiency-cooking-stoves.html

But fuel switching is not a one-way process where energy users switch to modern fuels and never come back to traditional fuels. Energy stacking is defined as when end-users in developing countries engage in multi-modal fuel usage depending on a variety of factors (e.g. variances in household income seasonally or over time), or utilising certain fuels for specific purposes (e.g. using kerosene for lighting and woodfuels for cooking).

Creating the incentive for a household, commercial enterprise or industry to engage in fuel switching can be challenging. The barriers to increased uptake of sustainable energy sources and more-sustainable energy equipment, such as solar home systems or LPG cooking apparatus, are well-documented [1] [2]. These can include higher costs for fuels, high initial investment costs putting systems/equipment out of reach of users, and problems with fuel availability, for example in distributing LPG fuels to remote rural areas.

These issues will be addressed in the next article in this series on the STEPs Blog, “Methods of Promoting LPG Uptake in Developing Countries”.

— Xavier Lemaire & Daniel Kerr, UCL Energy Institute, February 2016

[1] Pandey & Chaubal (2011) Comprehending household cooking energy choice in rural India. Biomass & Bioenergy, Vol. 35, pp. 4724 – 4731.

[2] Rai & McDonald (2009) Cookstoves and Markets – Experiences, Successes and Opportunities. Available at: http://www.hedon.info/docs/GVEP_Markets_and_Cookstoves__.pdf#

The ‘Real 5P Model’ in Cinta Mekar

Binu Parthan from SEA writes on the implementation of a pro-poor public-private partnership (5P) model for micro-hydropower in Indonesia.

I first heard about the 5P model or the Pro-Poor-Public-Private-Partnership in 2012 when I was in the mountain kingdom of Lesotho. The UN’s Economic Commission for Africa were scoping for an energy centre to be run by a cooperative as a 5P model.  I found the idea of PPPs in rural energy that focused on poverty alleviation quite compelling in the context of the rural energy work I was doing at the time. This approach was reflected in the Lesotho Energy Alternatives Programme (LEAP) that I developed for UNDP and the Sustainable Thermal Energy Partnerships (STEPs) project that Xavier Lemaire of UCL Energy Institute and I developed with during 2012-2013. Fast forward 2 years and the STEPs project is generously funded by UK Aid and on its way, and while responding to the baseline study on the STEPs project, I hear from Hongpeng Liu and Deanna Morris at the Energy Division of UN’s Economic and Social Commission for Asia-Pacific (UN-ESCAP) about the original 5P model which has been working for over 10 years in Cinta Mekar, Indonesia.

With kind support from Tri Mumpuni of People Centred Business and Economic Institute (IBEKA) (who incidentally is a recipient of Magsaysay award for her work on hydro power for rural electrification), weeks later I find my way to Cinta Mekar, a relatively remote hilly village about 3 hours drive from Jakarta. The Cooperative at Cinta Mekar – Makar Sari is headed by a diminutive Yuyun Yunegsih, a grandmother of three who was elected a few years ago by the 450 members of the cooperative. The cooperative manages the 120 kW hydro power plant which was commissioned in 2003. The investment in the hydro-mechanical and electro-mechanical equipment and the building materials were financed 50:50 by UN-ESCAP and a private company Hidropiranti. The facilitation was by IBEKA and the members of the community and cooperatives contributed labour and local materials for civil construction in a normal PPP mode. Today after 12 years the hydro power system is still working well and generating and selling electricity to the local utility – PLN at slightly over US cents 4/kWh. 40% of the $650-$1100 monthly revenues go to Hydropiranti and 40% to Mekar Sari cooperative while 20% is set aside for maintenance, repairs and replacement.

The Mekar Sari cooperative has done a number of impressive ‘pro-poor’ initiatives over the years with its share of the revenues. It has provided financial assistance to households which could not afford to obtain an electricity connection. The cooperative also provides scholarships to 360 kids from the community, provides a land fund for members who do not have land holdings, provides an allowance for women in the community to cover childbirth related expenses and also pays an allowance to older members in the community. It has plans to construct public toilets, drinking water fountains etc. all of which seems very impressive. This is an impressive ‘pro-poor’ element that I have not seen in energy projects in general. I have seen impressive pro-poor energy initiatives driven by visionary and charismatic individuals but not by organisations for such a long duration and consistent track-record.

While the social development and pro-poor schemes have been very impressive, the business side has been slightly less impressive. The cooperative has not been successful in renegotiating in higher off-take tariffs in the power purchase agreement with PLN which pays almost a three times higher tariff for similar community hydro plants. A major investment in a manufacturing facility to make gluten-free banana flour which would have employed 10 people have not been successful and lies largely unutilised as the supply chain and market prospects were not investigated properly. It’s possible that the cooperative may have benefitted from some hard-nosed business advice. However the initiative can be considered a notable success in establishing a technical and management solution at an institutional level which has worked for over 12 years and has continued to be profitable and having driven social development in the community.

From the STEPs project perspective it was interesting to see that almost all the electrified community was using LP Gas or gathering wood from the forests for cooking, thus affirming our view that the thermal energy aspect is often overlooked and left to individual households to solve. What was interesting was also that many households which could afford were using electric rice cookers for cooking the main staple food, and efficient electric cooking is something STEPs hasn’t paid much attention. For the STEPs project plans, 5P model which combines private sector quality, efficiency and investments with public and community investment and participation, with community organisations managing social benefits and which combines both electricity and gas supply could indeed be a better model economically and socially. The question whether the institutionalised community leadership in Cinta Mekar can be replicated elsewhere remains. After my visit I asked Yuyun what the cooperatives biggest challenge was and contrary to what I expected it turned out to be the efforts by the local government to take over the cooperative. So while technical, economic and social challenges can be overcome in rural energy services, political challenges often pose a greater risk to sustainability.

– Binu Parthan, SEA

Yuyun Yunegsih at the Cinta Mekar 5P Hydro Power Plant
Yuyun Yunegsih at the Cinta Mekar 5P Hydro Power Plant. Image: Sustainable Energy Associates

Nuon-RAPS (NuRa) Utility Field Visit – 30th October 2014

The STEPs team, following the meeting component of the network meeting, used the 30th October as an opportunity to visit premises belonging to the Nuon-RAPS (NuRa) utility. NuRa is one of three concessionaires currently operating in KwaZulu-Natal province, providing both solar home systems and LPG to customers. The solar home systems are provided on a fee-for-service basis, with customers visiting an energy store on a monthly basis to top up their system credit, via an electronic key. LPG is provided to customers on a direct purchase basis. NuRa had 19,005 SHS customers as of September 2013, with a net customer growth of ~1,000 per year. LPG is supplied to the company on a 30-day credit by Totalgaz, and the company also offers direct sales of ethanol gel, having also previously experimented with improved cookstove provision.

NuRa Mkuze main energy store

The NuRa main energy store at Mkuze – 30th October 2014 – Image: Xavier Lemaire

The STEPs project team visited two energy stores in the course of the day; the main energy store (and the centre of operations) at Mkuze, and a smaller energy store in Jozini. In Mkuze the team viewed the main operations of the organisation, from the process of credit top-up and LPG sale, to the equipment for the SHS, to the maintenance and repair division. In addition to this, the team observed the training procedure for new technicians on-site in Mkuze.

Topping-up credit for the SHS is done via an electronic token (magnetic key) which the customer brings to the energy store to add credit to. Maintenance teams also have a version of this token which collects operational data from the system at point of maintenance, for assessment by the company. Installations take place via car and motorcycle, and the company maintains its own fleet of vehicles. Technician training is also done on-site, with several demonstration rigs at the Mkuze store for this purpose.

The company also operates LPG bottle top-up facilities at each energy store, where customers bring empty bottles to be refilled, or purchase a new system in the case of the Shesha stoves.

NuRa training site

Technician training at the Mkuze energy store – 30th October 2014 – Image: Xavier Lemaire

NuRa test components

Testing components at the Mkuze energy store – 30th October 2014 – Image: Xavier Lemaire

NuRa bike maintenance

Motorcycle fleet maintenance at the on-site workshop – Mkuze energy store – 30th October 2014 – Image: Xavier Lemaire

In Jozini, the team visited one of the rural energy stores servicing more dispersed communities further North in KwaZulu-Natal. There they observed operations at the energy store, and also took the opportunity to have conversations with customers of the store, asking about the scale of their energy use and energy costs, as well as desires for future service (refrigeration, television). Of particular interest was the point that customers still used traditional woodfuels in addition to their LPG service, the primary driver behind this being the free availability of woodfuel to low-income consumers.

STEPs Team at the Jozini Energy Store

The STEPs team at the Jozini energy store – NuRA field visit 30th October 2014 – Image: Daniel Kerr

NuRa Jozini energy store

The Jozini energy store – 30th October 2014 – Image: Xavier Lemaire

WP_20141030_12_18_08_Pro

The Shesha gas cooker, offered by NuRa to customers, an integrated 5kg LPG bottle and single hob. NuRA field visit by STEPs 30th October 2014 – Image: Daniel Kerr

The NuRa utility offers a number of useful lessons for the STEPs project. First and foremost, that it is possible to run a successful utility targeting bottom-of-pyramid consumers on a fee-for-service basis, integrating electricity and thermal energy services. The integration of product sale, installation, maintenance and service into one site and under one company (the energy store and NuRa itself) provides resilience for the business and enables the free exchange of information, as well as increasing customer satisfaction through regular maintenance from a trusted source. Finally, the on-site training of technicians through energy stores gives the utility a strength in capacity, and prevents the need for outsourcing to other technicians, reducing costs.

– Daniel Kerr, UCL Energy Institute