Tag Archives: rural energy

Partnerships for Women’s Economic Empowerment through Clean Energy in Senegal

Access to energy in rural areas of Senegal is a persistent issue. Electrification rates in rural areas of the country can be as low as 4%, and over 89% of the population are still reliant on biomass fuels for thermal energy uses in the home, such as cooking. However, a number of barriers exist to addressing this situation, particularly for female entrepreneurs in the region: other commitments such as domestic work can hamper the amount of time available to establish a business, and technical, financial and organisational capacity is often low. Two non-profit organisations, ENERGIA and Energy4Impact, are partnering with local women entrepreneurs in rural areas of the country to improve energy access and reduce the burdens of unsustainable fuel use on families.

Energy 4 Impact with Women Entrepreneurs in Tambacounda, Senegal. Photo: Judith Quax, July 2017

In the rural Tambacounda region of the country, ENERGIA and Energy4Impact have been training women entrepreneurs to become sales agents for small solar home systems, solar lanterns and improved cookstoves. The organisations have taken an “eco-system” approach to the training, attempting to address the wide range of business, financial, capacity and gender-related barriers to developing women’s energy entrepreneurship as a whole. This has included partnerships with local manufacturers and suppliers to enable access to technologies, as well as business and financial training for entrepreneurs, and sensitising campaigns in the local area to enable homeowners to realise the benefit of engaging with women in the energy product space.

Currently, Energy 4 Impact is supporting 160 women entrepreneurs in Tambacounda to become sales agents of improved cookstoves and solar lanterns. From 2016 to 2017, these entrepreneurs sold 1,132 solar lanterns and 822 efficient biomass cookstoves, helping over 17,000 people access clean thermal energy.

However, the engagement in Senegal by the two non-profit organisations is not solely for the purpose of entrepreneur training. Co-benefits of improved energy access in the business space are also targeted. This is particularly being realised in improved access to solar refrigeration technologies for small-scale agri-businesses. Energy4Impact are partnering with two government organisations to offer technical training for women entrepreneurs in the agri-business sector to use solar refrigeration technologies to diversify their business. The NGO also engaged with private-sector suppliers of equipment to suggest suitable technologies scaled to the size of the women’s business needs. In addition, the NGO also engaged with agri-business owners directly to design and manage credit line mechanisms for leasing solar-powered technologies that could be repaid in instalments, enabling access to technologies on a monthly credit basis applicable to the entrepreneurs’ income.

Finally, the NGOs are partnering directly with women entrepreneurs in the Tambacounda region to offer small solar home systems on an innovative pay-as-you-go basis. This is being conducted in partnership with Boabab+, a social enterprise focusing on PAYG models for solar home systems and solar lanterns. Women entrepreneurs are being trained as distribution agents for the products, and can purchase solar home systems from the enterprise with a 25% down-payment, with the remaining 75% being repaid in three fortnightly instalments with zero interest. Clients are able to access one month’s electricity upon purchase of the system, with further payments able to be made on a daily, weekly or monthly basis through mobile money systems already existing in the region. This gives consumers the flexibility to pay for energy when they need it at a price point appropriate for them, while reducing the economic barriers for entrepreneurs to enter the sector through offering this flexible credit mechanism. The system has proven fairly successful: one entrepreneur in partnership with a local women’s group sold 152 solar lamps from 2016-2017, where they ordinarily would not have had the capital to even begin investing in the technology for sale.

– Daniel Kerr, UCL

References

ENERGIA (2018) Helping women entrepreneurs scale-up rural supply chains to reach last mile markets. Available at: http://www.energia.org/helping-women-entrepreneurs-scale-rural-supply-chains-reach-last-mile-markets/ [Accessed 11th March 2018]

Energy4Impact (2018) Empowered women securing energy access in rural Senegal. Available at: https://www.energy4impact.org/news/empowered-women-securing-energy-access-rural-senegal [Accessed 11th March 2018]

Advertisements

Supporting Thermal Energy Services in Afghanistan

Binu Parthan from Sustainable Energy Associates writes on the growing support for thermal energy service considerations in Afghanistan.

Afghanistan is often in the news for the wrong reasons such as large swathes of migrants on European shores, armed conflicts, loss of life etc. However it is possible that the country might actually be implementing one of the most innovative energy services projects which has just started implementation with support from the STEPs team.

Decades of political instability and conflict has resulted in low levels of infrastructure access levels in Afghanistan. Over 57% of the Afghan population does not have access to electricity and 81% of the population does not have access to non-solid fuels (World Bank/IEA, 2015). The situation is dire in rural Afghanistan where only 4% of the population have access to non-solid fuels. Many such locations in Afghanistan are located in colder regions with more than 6000 HDDs/Year.

Afghan households use a Tandoor, a traditional cylindrical clay or metal oven for cooking and baking an efficient version of which is shown in the Fig. It is reported that 90% of cooking revolves around making bread called Naan, followed by potatoes. Houses also use a Bukhari, a traditional space heater for heating the living spaces in winter. Some of the traditional houses also have a Tawa Khana which circulates the hot combustion gases from the tandoor under the floor of the living room and releases to the outside through the opposite wall.

Households in Afghanistan use firewood, animal dung cakes, charcoal and shrubs for heating and cooking. Traditionally firewood and charcoal were purchased in rural Afghanistan but increasingly shrubs and animal dung cakes also have to be purchased. The thermal energy use of solid fuels also have their serious health effects, the annual number of pre-mature deaths from indoor-air pollution is estimated to be 54,000/Year (WHO, 2009). In comparison the civilian casualties in 2015 from the armed conflict in Afghanistan was 11,002 (UNAMA, 2016). The use of solid fuels are also a financial strain on the Afghan households as the average rural Afghan household spends over $ 90 on fuels of which only 12% is on kerosene/lighting with 88% on thermal energy. The prices of the solid fuels also increase by 15-25% during winter months as well.

efficienttandoor

An efficient Tandoor in Afghanistan. Image: COAM/Amy Jennings

Since late 2013, since the inception of the STEPs project, till late 2015, Sustainable Energy Associates (SEA), one of the partners have been working with the Ministry for Rural Reconstruction and Development (MRRD) in Afghanistan and UNDP to develop a project to address these rural energy and thermal energy challenges. These efforts have led to development of a new programme – Afghanistan Sustainable Energy for Rural Development (ASERD) which has business model and financial innovation at the core of the programme design and was finalised by SEA in late 2015. The project agreement was signed by MRRD and UNDP in late December 2015 and will be financed by the governments of South Korea and Sweden. The project will have a financial outlay of over US$ 50 million and will be implemented over 4 years during the period 2016-2019.

The ASERD programme plans to establish sustainable rural energy services in 194 rural communities in 4 years, providing both electrical and thermal energy services. The efforts will bring sustainable energy to over 19,500 households providing health, economic and social benefits. However the major contribution the programme will make to rural energy in Afghanistan would be to establish delivery models that are technology neutral, leverage additional local and international resources, mobilise communities, engage the private sector and financiers to establish a self-sustaining delivery model. The thermal energy service model which will be used by ASERD is shown in Fig.1.

afghanbinuimage2

Thermal Energy Service Model of ASERD. Image: Sustainable Energy Associates

Past rural energy programmes in Afghanistan have mainly relied on technology driven approaches which have focused on commissioning electricity generating equipment and transferring ownership, operation and utility management responsibilities to the communities. These efforts have also largely ignored the cooking and heating needs of rural population in a country which has cold winters. The opportunities to go beyond household energy to commercial, enterprise and public service use of energy have not been exploited or capitalised effectively. Similarly private sector and financial institutions have only played a limited role in the programme so far and the aspects of policy, regulation, standards and incentive frameworks have also not received considerable attention.

Against this backdrop, the ASERD programme seeks to graduate from the current approach to establish a technology-neutral, sustainable service delivery arrangement to provide thermal and electrical energy in rural areas of Afghanistan for household, social and productive needs. The programme will also provide energy in rural areas to seek agriculture productivity gains, rural enterprise development, income generation, community social empowerment and cohesion as well as to expand public service to improve access to better health, education and security in rural areas. To deliver these services in rural areas in a sustainable manner the programme will seek to engage the national utility and the private sector in addition to community mobilisation.

The programme will also develop capacities of the government agencies, civil society and the, private sector including the financial sector. ASERD will also create frameworks for policy and regulation, testing and quality assurance as well as will also pilot seven innovative energy service delivery models which will leverage skillsets and resources from communities, private sector and financial institutions some of which are linked to global financing mechanisms for climate change and energy. These models will also result in benefits to women and the marginalised nomadic Kuchi communities.

The design of ASERD has benefited from the learnings on thermal energy services offerings, key challenges and solutions gained by the STEPs project team which will now be used to support about 20,000 families in Afghanistan. SEA will be involved during the implementation of ASERD to support MRRD and UNDP.

– Binu Parthan, SEA

References

Conservation Organisation of Afghan Mountain Areas (COAM), 2012, Shah Foladi Village energy Use Survey

International Energy Agency (IEA) and the World Bank. 2015. “Sustainable Energy for All 2015—Progress Toward Sustainable Energy” (June), World Bank, Washington, DC. Doi: 10.1596/978-1-4648 -0690-2 License: Creative Commons Attribution CC BY 3.0 IGO

United Nations Assistance Mission in Afghanistan (UNAMA), 2016, ‘Civilian Casualties Hit a New High in 2015’ available at  https://unama.unmissions.org/civilian-casualties-hit-new-high-2015

United Nations Development Programme (UNDP), 2015, Project Document: Afghanistan – Sustainable Energy for Rural Development (ASERD)

World Health Organisation, 2009, Country profile of Environmental Burden of Disease: Afghanistan

The recent evolution of China’s National Biogas Program and lessons learned for application in other regions

This blog aims to describe in brief the history of China’s national biogas program and its transition phases in both the 1980s (moving to prefabricated plastic digesters) and more recently in promoting household scale systems, as well as how this program compares to other government-scale programs in household and centralised biodigesters. [1] [2] [3]

The Chinese National Biogas Program is one of the most cited examples of a successful biogas dissemination program at a government scale. The first biodigesters started appearing in China in the 1920s, and from the 1970s onwards the government began introducing household-scale centralised biodigester systems for rural communities under the predecessor of the current program. The first major transition in the program took place in the 1980s. Previously to this, most biodigesters in the country were constructed on-site from brick or concrete, however this period saw the introduction of what are known in the country as “commercialised digesters”. This covers three constructions of prefabricated biodigesters. Fibreglass-reinforced plastic (FRP) digesters began appearing in the 1980s themselves, whilst so-called plastic soft (PS) and plastic hard (PH) digesters came into the market in the mid-90s. These digesters offered significant commercial and operational advantages, being able to be constructed at a central site and then disseminated, as well as being more reliable, having lower maintenance requirements and a better performance overall.

xia zuzhang china biogas graph

Source: Adapted from Zuzhang (2014) Domestic biogas in a changing China: Can biogas still meet the energy needs of China’s rural households, http://pubs.iied.org/pdfs/16553IIED.pdf

As of 2011, 41.68 million households were using biogas services through the National Biogas Program. As of 2010 production capacity for the three previously-described prefabricated digester types was approximately 2,500,000 per year, and as of 2014, approximately 50 million households had been reached with biogas supply, using over 16 million cubic metres of biogas per year [4]. At least one prefabricated digester manufacturer exists in each Chinese province, over 100 in total. These digesters are also marketed across South-East Asia, and also recently to Sub-Saharan Africa.

However, there exist a number of present challenges to the continued development of the Program. Current funding for biogas digester construction predominantly comes from state, regional and government sources in the form of a subsidy for rural households. Rural households are expected to contribute, but this varies widely from just the labour costs, to 50-70% of the total installation costs. Some funding criteria stipulated by the government also exclude large proportions of the rural population: for a village to qualify for biodigester subsidies for example, at least 70% of the households must own sufficient livestock. This funding regime, as it exists, makes no provision for servicing and maintenance, and whilst biogas service cooperatives are beginning to appear in rural areas, no effort has been made to assess the current proportion of functioning digesters nor repair any identified non-functioning systems at a local government level.

Possibly the largest constraint to the continued operation and growth of the program is internal migration in China. The rural population is falling significantly as urban development continues, with huge number of rural people moving to urban areas for greater employment prospects and wages. This also contributes to biodigester effectiveness; with traditional animal husbandry industries giving way to larger, centralised livestock farming, feedstock regimes are decreasing in suitability in rural China for household-scale digesters, presenting an ongoing constraint to the operation of the program.

– Xavier Lemaire & Daniel Kerr, UCL Energy Institute

[1] Raha, Mahanta & Clarke (2014): http://dx.doi.org/10.1016/j.enpol.2013.12.048

[2] Groenendaal & Gehua (2010): http://dx.doi.org/10.1016/j.energy.2009.05.028

[3] Deng et al. (2014): http://dx.doi.org/10.1016/j.rser.2014.04.031

[4] IRENA (2014) Renewable Energy Prospects: China. Available at http://irena.org/remap/IRENA_REmap_China_report_2014.pdf

Maintenance of biodigesters and issues surrounding maintenance/service arrangements

Even in the presence of mandated service agreements maintenance for biodigesters can still be an issue. For example, time constraints on private contractors [1] from central government to install and maintain digesters, lead to a slipping in maintenance standards. In a village in Assam interviewed in the paper, no follow up visits from the contractors were had for four years, and a 20% digester failure rate was recorded. Communications issues were a key contributor to this: the fact that a provision of a half of the installation subsidy for maintenance of plants over 5 years old was not communicated to households or the contractors.

broken biogas assam india

A broken biodigester in Assam, India, having not been repaired for 6 months. Source: Raha, Mahanta & Clarke (2014) The implementation of decentralised biogas plants in Assam, NE India: The impact and effectiveness of the National Biogas and Manure Management Programme. http://dx.doi.org/ 10.1016/j.enpol.2013.12.048

One of the more overlooked aspects of biogas digester services and operation is the maintenance requirements of digesters. Older digester designs (for example dome-type biodigesters constructed from brick or earth) require a regular maintenance schedule (monthly to quarterly is common) [2] in order to maintain best performance, including maintaining the chemical balance of the digesting chamber and its structural integrity, repairing cracks in the chamber if necessary. More modern household and collective-scale designs are based off a plastic digesting chamber, usually fibreglass-reinforced plastic (FRP), and as such require less intensive maintenance (annual maintenance visits are sufficient), but still have a maintenance burden to address for peak performance (for example, maintaining the chemical balance of the digester through appropriate feedstock insertion).

However, even in the presence of mandated service agreements for biodigesters, for example delivered through a fee-for-service energy service company (ESCO), maintenance can be overlooked. A useful case study illustrating this can be obtained from India’s National Biogas and Manure Management Program (NBMMP) [1]. The NBMMP relied on local governments in India contracting the private construction sector to construct biogas digesters for rural communities. Time constraints on these contractors on installation, stemming from the prevailing climatic conditions limiting the working period of the year due to monsoons, meant that maintenance standards, for which the contractors under the tender from local government were also responsible, and the overall quality of installation of digesters, slipped drastically. Some contractors reported having to fill an annual allocation of 6,000 digester installations in just three months, at a rate of over 60 digesters per day, often for small companies of just 5-10 technicians. Hence, some digesters were not being maintained for four years or more, and there was a 20% overall digester failure rate. Communication between the public bodies and private contractors was also an issue: the NBMMP made provision of half the subsidy granted to households for purchasing digesters as a maintenance grant over a five-year period, which was barely taken advantage of due to a lack of awareness on the part of households and contractors.

This case study makes clear the necessity of accounting for maintenance arrangements in the design of any biodigester business plan or program. Ensuring the maintenance schedule is followed will extend the life of the biodigester and improve its performance, resulting in greater satisfaction with the system from the point-of-view of end-users. This fact makes biodigesters particularly suited to a fee-for-service business model: regular maintenance can easily be combined with regular payment collection visits, reducing the cost burden on the company/organisation and improving service.

The final post in this series will focus on the recent evolution of the Chinese National Biogas Program, and the lessons to be learned for cross-application in other regions globally.

– Xavier Lemaire and Daniel Kerr, UCL Energy Institute

[1] Raha, Mahanta & Clarke (2014): http://dx.doi.org/10.1016/j.enpol.2013.12.048

[2] Surendra et al (2014): http://dx.doi.org/10.1016/j.rser.2013.12.015

The Challenges and Opportunities of Centralised and Decentralised Biodigesters

The STEPs research project explores the relative benefits and dis-benefits of larger centralised biogas systems at a village scale versus smaller family-scale systems. It also investigates the economic and financing factors (centralisation brings economies of scale but can only really be implemented by organisations/governments, family-scale systems may be out of reach of user capital without financing arrangements), environmental factors, and social and behavioural considerations (do users want to collectively cook, issues with economics of pipe gas supply meaning necessity of group facilities etc) inherent in biodigester development.

Biogas digesters can be a valuable solution to providing thermal energy services to rural and urban households in the developing world. The technology is particularly applicable in rural areas, where access to feed stock for the digesting chamber in the form of agricultural wastes and other organic wastes is greater. In general, digesters fall into two broad categories: household-scale biodigesters, and larger, centralised biodigesters.

Laramee & Davis 2013 Dome Biodigester in Tanzania

Dome-type biodigester in Arusha, Tanzania [1]

Household-scale biodigesters are often seen as the most viable option for rural communities and households. These are generally small, with digesting chambers of volumes in the 4 to 13 cubic metres range. These installations will support the cooking needs of a rural household, as well as providing biogas for heating or lighting if required. Tailoring the size of the biogas system to the availability of feedstock for the household is critical for successful functioning of the system: studies have suggested 4-6 heads of cattle is a sustainable target if using agricultural wastes for feedstock, for an average-sized family of five. Individual biodigesters can produce sufficient gas for a single person on as little as 1 kg/day of feedstock.[2]

However, one of the primary limiting factors in the adoption of household biodigesters is financing and end-user capital constraints. Household-scale systems are still relatively expensive for the majority of rural developing-world users, and experience has shown that without the provision of credit facilities in biodigester programs, or government subsidies, adoption rates remain low.

Centralised biodigester systems offer a different set of benefits and challenges. Economies of scale are the major advantage: one centralised system can serve a medium-scale settlement or several small settlements, with a reduced burden for upfront capital costs and maintenance compared to the same service with household-scale systems, in the range of US$100 – 500 per household. The Chinese National Biogas Program [which will be the subject of a later blog in this series], has been the major implementer of centralised systems, however experience also exists in other South-East Asian countries. Examples of this can be found in the centralised digesters built near Beijing to service rural villages. For an upfront cost of ~US$1 million, 1900 households are serviced through each centralised digester, with biogas available at a 20% discount compared to market LPG prices, and the additional benefit of organic effluent being made available for sale to the local farms feeding the digester.[2] The major constraint, however, to wider dissemination of centralised systems is the significantly higher up-front capital costs. This puts the systems out of reach for private users in the majority of cases, government-scale implementation is more common.

Socio-political conditions are another factor that has proved a constraint in biogas implementation projects in developing countries. Centralised biogas digesters can have difficulty with biogas supply to end-users, particularly given the poor economics of installing piped gas supply in small rural communities. Communal cooking facilities have been a solution to this problem in theory, however experience from India suggests that collective cooking is not desired by the rural population, and this has impacted upon the success of centralised digester installations. As with dissemination programs for clean cookstoves, biogas installations need to take into account the end-users needs and desires in design and installation for product use and performance.

The other posts in this series will cover the question of why biogas hasn’t succeeded in Sub-Saharan Africa as it has in South-East Asia, the maintenance question for biogas services, and lessons from the Chinese National Biogas Program.

– Xavier Lemaire & Daniel Kerr, UCL Energy Institute

[1] Laramee & Davis (2013) Economic and environmental impacts of domestic bio-digesters: Evidence from Arusha, Tanzania. http://dx.doi.org/10.1016/j.esd.2013.02.001

[2] Hojnacki et al, MIT (2011) Biodigester Global Case Studies. Available at: https://colab.mit.edu/sites/default/files/D_Lab_Waste_Biodigester_Case_Studies_Report.pdf