Tag Archives: public-private partnerships

Building a Sustainable Market for Biodigesters in Vietnam – SNV World/EnDev

Since 2003, SNVWorld, with funding from the Netherlands Ministry of Foreign Affairs (DGIS), have been working to develop the biogas and biodigester sector in Vietnam. SNV to date have been providing technical assistance and developing financial capacity in conjunction with the country’s Ministry of Agriculture and Rural Development, with the Department of Livestock Production under the MARD acting as the implementing partner for the project. Vietnam is particularly suitable for the development of biodigester technology, given the high prevalence of livestock farming and the large heads of animals present in the country. In 2016, over 26 million pigs were raised in the country, and utilising the waste products from this livestock farming can provide significant benefits to the economy, as well as sustainability objectives. As of March 2017, the project has installed over 150,000 biodigesters in the country, with a further 80,000 having been installed under spin-off projects implemented by the MARD.

The project has not only focused on installations, but has sought to develop the capacity for a functional, self-sustaining market for biodigester technology in the country. To that end, as of March 2017 the project has created over 2,500 new jobs in rural areas of the country, and trained over 1,700 masons in the construction of biodigesters. The consumer-side has also been targeted by the project, with over 160,000 households receiving both pre-installation training on the use of biodigesters, and post-installation training on the maintenance of the digester chamber and the use of bio-slurry in agricultural applications.

Dome-type biodigester in rural Vietnam. Image: SNVWorld

One of the innovative measures used to assist in developing a sustainable biogas sector in the country was implemented by the NGO EnDev in partnership with SNVWorld and the MARD. The NGO has recently implemented a Results-Based Financing (RBF) scheme in the country to promote the acceleration of biodigester construction, through empowering the supply-side of the biogas market to keep up with demand through subsidy. A financial incentive is provided for the construction and verification of each new biodigester, starting at US$50 for each new digester and falling over time. The intention is that the suppliers who receive this incentive can then reinvest the extra income in attracting more staff and scaling their businesses. The verification system is implemented through a novel online application developed in partnership with SNVWorld and AVKO, combining input data, photos and GPS locations translated to maps that are automatically updated with new information from the field. This system has replaced the traditional hard-copy form submission system for verification of new installations, streamlining the process for both EnDev and installers. The system is currently in use by 146 active installers in 18 provinces in Vietnam, and to date has verified over 35,000 biodigester installations.

In terms of capacity-building, SNV are currently partnering with MARD to continue the training of government installation and verification partners to build capacity in the biodigester sector, in an effort to better support a viable, private-sector supply and distribution market. Government technicians are also being trained in communicating about benefits of biogas technology, supporting enterprises in identifying suitable households and providing them with extension services on the use of bio-slurry.

– Daniel Kerr, UCL

References

SNVWorld (2018) Vietnam Biodigester Programme. Available at: http://www.snv.org/project/vietnam-biogas-programme [Accessed 11th March 2018]

Teune (2017) Igniting a Self-Sustaining Biogas Market in Vietnam. Available at: http://www.snv.org/update/igniting-self-sustaining-biogas-market-vietnam [Accessed 11th March 2018]

Partnerships and Opportunities for Clean Cookstoves Support from Governments

This post aims to discuss where the opportunities may lie for governments and private sector organisations to enter partnerships for clean cookstoves market development. Both public and private sector actors have advantages and disadvantages in the approaches generally taken by such bodies in the clean cookstoves market space.

ghstakeholdersmap

Map of stakeholders in the clean cookstoves sector in Ghana. Image: http://cleancookstoves.org/binary-data/RESOURCE/file/000/000/311-1.pdf

Public-sector operations have the ability to achieve scale quickly and effectively, however are often lacking in terms of lasting presences in markets due to the financing models (direct dissemination, direct subsidy) used most commonly in these circumstances. These models tend to lead to consumers failing to maintain use of disseminated equipment, leading to a shrinking of the market presence for cookstoves technologies in the longer term. Private sector market actors, conversely, can take longer to achieve scale in their operations, and have to contend with acquiring financing, either through their operations or donors, to continue maintaining their market presence.

Hence, there are significant, proven opportunities for the combination of approaches. Public-private partnerships (PPPs) have the potential to alleviate the negative aspects of both public and private approaches, with private sector actors operating as delivery agents for overarching public-sector objectives, or public sector operators supporting the development of a functioning private market.

The development and marketization of the Sri Lankan clean cookstoves sector, with donor agencies, the state electricity agency, and private sector companies all collaborating to develop a functioning private cookstoves market, is a good example of how PPPs can achieve successful results in the clean cookstoves market context. Support from the Ceylon Electricity Board (CEB) in distributing clean cookstoves to their existing customers allowed the development of functioning private production enterprises across the country, with a guaranteed market for their produce. Local production of clay stove liners is still continuing in the country. [1]

enablingenvironment

Steps in improving the enabling environment for clean cookstoves. [2]

The creation of an enabling environment for new businesses to enter the clean cookstoves market is another crucial role of governments in developing a clean cookstoves sector. The above image shows a number of pertinent steps that can be taken to do this. Starting at a consumer level, raising awareness of the benefits of a clean cookstove technology, through to allowing small and large businesses to access financing to scale their operations, and enabling credit facilities either through public or commercial banks, governments have the potential to significantly contribute to the ease of starting and maintaining a functioning private clean cookstoves market.

– Daniel Kerr, UCL Energy Institute

[1] Amerasekera, R.M. (2006) Commercialisation of improved cookstoves in Sri Lanka: A case study. Available at: http://www.inforse.org/Case/Case-SriLanka-Stoves.php3

[2] GVEP International (2012) Global Alliance for Clean Cookstoves Kenya Market Assessment, Sector Mapping. Available at: http://cleancookstoves.org/resources_files/kenya-market-assessment-mapping.pdf

Clean Cooking Technologies and Dissemination: Growing Markets

Clean cookstoves, also known as improved cookstoves (ICS) have the potential to significantly change patterns of household and institutional energy use in developing countries. However, access to clean cookstoves for consumers in developing countries remains low, despite high levels of fuel use appropriate to cookstoves being prevalent in developing countries, particularly in rural areas.

cookstovegraph1

Share of population using solid fuels with access to improved cookstoves in Developed Countries (DCs), Least Developed Countries (LDCs) and Sub-Saharan Africa (SSA) [1]

The use of clean cookstoves has the potential to improve livelihoods, particularly for women and children, in developing countries through alleviating the time burden of gathering fuel, allowing users to spend more of their time on other activities, for example income generation. Daily collection of firewood for cooking can vary in duration from 3 hours [7] to seven hours [8]. Clean cookstove technologies such as rocket stoves can achieve the same cooking results, in the same time, while using just 60% of the fuel [8]. Global Alliance for Clean Cookstoves research has shown that traditional cookstove-using households in India, Bangladesh and Nepal on average spend 660 hours/year on fuelwood collection, while improved cookstove households spend just 539 hours/year [9]. Indoor air quality improvements are another key benefit. Around 3.8 million premature deaths annually are caused by non-communicable diseases, such as heart diseases and lung cancer that can be attributed to indoor air pollution [3].

Removing poorly-combusting, high-smoke fuels such as traditional wood fuels from the household energy mix in developing countries, and reducing indoor air pollution consequently, would have huge positive consequences for public health in the developing world.

Clean cookstoves technologies tend to be demarcated on the type of fuel used, as well as the general design of the cookstove and its technological aims. These cookstoves can also be demarcated through cost, with lower-cost cookstoves made from clay or metal with a clay lining, and higher-cost stoves using factory-machined materials like metals. Differences in cost tend to lead to different target market, with low-cost cookstoves targeting rural consumers, and higher-cost cookstoves focusing on emerging middle classes and high-income employees. Costs for a household clean cookstove can range from US$10 to US$350+, and as such different business models are required to disseminate these stoves to best reach their target markets. High-cost stoves are most commonly directly sold to consumers, whereas low-cost stoves can be available through government or donor programs of dissemination, as well as through direct purchase, vendor-credit or micro-credit models. [4] [6]

stovetech-combined-wood-charcoal-ics

Stovetech combined wood/charcoal improved cookstove. Source: http://inhabitat.com/four-cooking-stove-designs-that-can-save-the-world/

Solid fuel cookstoves, for example cookstoves using traditional woodfuels, tend to aim for significantly more efficient combustion of fuels, reducing indoor air pollution in the form of smoke and particulate matter, as well as generating more heat. These efficient designs can focus on combusting fuel more effectively, through designing combustion chambers to allow for more aerobic combustion, whereas others focus on having a heavily-insulated cooking chamber to reduce heat loss, focusing on longer cooking times for the same amount of fuel. Other cookstove designs for developing countries focus on using more efficient fuels with low-cost technology. Some examples of this include efficient charcoal stoves, as well as LPG stoves designed for developing country use.

cookstove-blog-table-1

Lab efficiencies of various established cookstove designs used in the developing world. Table established by D. Kerr derived from http://catalog.cleancookstoves.org/test-results, with standards available online at: http://cleancookstoves.org/technology-and-fuels/testing/protocols.html

However, lab efficiencies do not always translate into real-world efficiencies. A recent Indian cookstoves study conducted by researchers at the University of Washington and the University of British Colombia found disparities in real-world use efficiencies in a recent CDM program of cookstove dissemination from the Indian government. Particulate matter emissions especially were higher than expected, which may have been due to the ‘stove-stacking’ phenomenon, where families continue to use traditional cookstoves after receiving an improved cookstove. Some 40% of households in this study were found to be doing this [5].

Dissemination of clean cookstoves, and growth in access to the technologies, has the potential to have a significant positive impact on the sustainability of energy use and improvement of livelihoods of consumers in developing countries. Whilst state-run programs have had some success in directly distributing clean cookstoves, market-based measures have been shown to have significant impacts over the medium-long term, and private cookstove markets have developed in a number of Sub-Saharan African countries, such as Kenya, South Africa and Uganda. Markets across the world have disseminated large numbers of cookstoves, with over 12 million disseminated in China in the 2012-2014 period, 4.5 million in Ethiopia, and nearly 3 million in Cambodia [12]. The Kenyan clean cookstoves market was sized at 2,565,954 units in 2012, with high levels of urban and peri-urban penetration (~35%), but significantly less rural coverage [10]. The Ugandan market by comparison is estimated to be around 600,000 households, with urban areas again dominating this group [11].

This series of posts aims to explore the variety of models that private businesses can use to achieve scale and sustainability in their operations in the clean cookstoves sector [2]. Direct dissemination will be compared to vendor purchase, vendor credit and micro-credit models in the second blog of this series. Post three will explore the clean cookstoves value chain and identify opportunities for business growth along the value chain, and the fourth post in this series will examine the role of government in promoting clean cookstoves businesses.

– Daniel Kerr, UCL Energy Institute

[1] Bazilian et al. (2011) Partnerships for access to modern cooking fuels and technologies. Current Opinion in Environmental Sustainability, Vol. 3, pp. 254 – 259.

[2] Rai & McDonald, GVEP International (2009) Cookstoves and markets: experiences, successes and opportunities. Available at: http://www.hedon.info/docs/GVEP_Markets_and_Cookstoves__.pdf

[3] WHO Website (2016) Household air pollution and health.  Available at: http://www.who.int/mediacentre/factsheets/fs292/en/

[4] Global Alliance for Clean Cookstoves (2016) Clean Cooking Catalog.  Available at: http://catalog.cleancookstoves.org/stoves

[5] University of Washington (2016) Carbon-financed cookstove fails to deliver hoped-for benefits in the field. Available at: http://www.washington.edu/news/2016/07/27/carbon-financed-cookstove-fails-to-deliver-hoped-for-benefits-in-the-field/

[6] Global Alliance for Clean Cookstoves (2016) Business and Financing Models., Available at: http://carbonfinanceforcookstoves.org/implementation/cookstove-value-chain/business-models/

[7] FAO (2015) Running out of time: The reduction of women’s work burden in agricultural production. Available at: http://www.fao.org/3/a-i4741e.pdf

[8] GACC (2015) The Use of Behaviour Change Techniques in Clean Cooking Interventions to Achieve Health, Economic and Environmental Impact. Available at: https://cleancookstoves.org/binary-data/RESOURCE/file/000/000/369-1.pdf  

[9] GACC/Practical Action (2014) Gender and Livelihoods Impacts of Clean Cookstoves in South Asia. Available at: https://cleancookstoves.org/binary-data/RESOURCE/file/000/000/357-1.pdf

[10] GVEP/GACC (2012) Kenya Market Assessment: Sector Mapping. Available at: https://cleancookstoves.org/binary-data/RESOURCE/file/000/000/166-1.pdf

[11] GVEP/GACC (2012) Uganda Market Assessment: Sector Mapping. Available at: http://cleancookstoves.org/resources_files/uganda-market-assessment-mapping.pdf

[12] REN21 (2016) Renewables Global Status Report. Available at: http://www.ren21.net/wp-content/uploads/2016/06/GSR_2016_Full_Report_REN21.pdf