Tag Archives: markets

Solar Water Heating as an Energy Service – Part 1 – Technology Choices and Markets

Solar water heaters as a product have the potential to contribute considerably to energy demand reduction in developing countries. This exists both as a household-scale technology, and in industrial applications such as desalination in countries such as the UAE and Saudi Arabia, and industrial process heat in both developed and developing countries. A number of developing countries around the world, notably those in Sub-Saharan Africa, have had success in disseminating solar water heating products on a commercial basis, in addition to a number of large-scale government dissemination programs. Countries such as South Africa (with around 500,000 systems installed as of 2016) and China (which has over 85 million installed SWH units as of 2016) have developed a robust network of commercial installers and manufacturers of solar water heating units and parts, selling products on a market basis to households and businesses.

Solar water heater installed by ESKOM, South Africa. Image: gmourits, Flickr, via http://inhabitat.com/eskom-installs-solar-powered-heaters-on-south-african-roofs/

 

There are a number of opportunities in developing country markets to develop a solar water heating sector. A number of developing countries, particularly those in Sub-Saharan Africa, have high levels of insolation (sunlight kWh/m2/day), and a consistent demand across income segments of the population for water heating. Industrial process heat is another sector where solar water heating could have an impact, as is institutional process heat, for example heat exchangers for hospital refrigeration, and hot water for use in health centres and schools.

Entrepreneurs and companies looking to enter the solar water heating market space need to consider a number of questions before starting their operations. Firstly, an appropriate technology choice is essential for succeeding in the SWH market, perhaps more so than many other renewable energy technologies. Deciding which consumer segment or income bracket to target informs the technology decision somewhat, but thorough research needs to be done on what the market and consumers can afford before deciding on a technology. Main technology streams for SWH include flat-plate solar collectors, and evacuated tube solar collectors. Both work on similar principles, heating water that passes through the collector, either through capillary action or through the use of an electric pump. Flat-plate collectors can be slightly less efficient than evacuated tube designs due to heat loss through convection, however they are also less expensive and simpler to produce. Evacuated tube designs are generally more efficient at heating water, but are also more expensive to compensate for the increased complexity in manufacture.

Flat-plate solar collector installed on a house in the United Kingdom. Image: uk.solarcontact.com

Flat-plate solar collector efficiency vs evacuated tube efficiency at various temperature ranges for a typical North American location. Source: https://blog.heatspring.com/solar-thermal-flat-plate-or-evacuated-tube-collectors/

 

When designing a new solar water heating business or intervention, therefore, it is important to consider which variant on the technology is to be used, and at what scale (household, institutional, industrial etc.), in order to plan dissemination based on affordability for the consumer. The next blog in this series will investigate business and financing models that can assist in improving the sustainability and replicability of solar water heating energy service companies.

– Daniel Kerr, UCL Energy Institute

References

Clean Technica (2015) World’s Largest Solar Powered, Jellyfish-Fightin’ Desalination Plant To Be Built in Saudi Arabia. Available at: https://cleantechnica.com/2015/01/22/worlds-largest-solar-powered-desalination-plant-under-way/

Urban, Geall & Wang (2016) Solar PV and solar water heaters in China: Different pathways to low carbon energy. Renewable and Sustainable Energy Reviews, Vol. 64, pp. 531 – 542

EE Publishers (2016) Solar water heater rollout programme gains momentum. Available at: http://www.ee.co.za/article/solar-water-heater-rollout-programme-gains-momentum.html

Advertisements

Partnerships and Opportunities for Clean Cookstoves Support from Governments

This post aims to discuss where the opportunities may lie for governments and private sector organisations to enter partnerships for clean cookstoves market development. Both public and private sector actors have advantages and disadvantages in the approaches generally taken by such bodies in the clean cookstoves market space.

ghstakeholdersmap

Map of stakeholders in the clean cookstoves sector in Ghana. Image: http://cleancookstoves.org/binary-data/RESOURCE/file/000/000/311-1.pdf

Public-sector operations have the ability to achieve scale quickly and effectively, however are often lacking in terms of lasting presences in markets due to the financing models (direct dissemination, direct subsidy) used most commonly in these circumstances. These models tend to lead to consumers failing to maintain use of disseminated equipment, leading to a shrinking of the market presence for cookstoves technologies in the longer term. Private sector market actors, conversely, can take longer to achieve scale in their operations, and have to contend with acquiring financing, either through their operations or donors, to continue maintaining their market presence.

Hence, there are significant, proven opportunities for the combination of approaches. Public-private partnerships (PPPs) have the potential to alleviate the negative aspects of both public and private approaches, with private sector actors operating as delivery agents for overarching public-sector objectives, or public sector operators supporting the development of a functioning private market.

The development and marketization of the Sri Lankan clean cookstoves sector, with donor agencies, the state electricity agency, and private sector companies all collaborating to develop a functioning private cookstoves market, is a good example of how PPPs can achieve successful results in the clean cookstoves market context. Support from the Ceylon Electricity Board (CEB) in distributing clean cookstoves to their existing customers allowed the development of functioning private production enterprises across the country, with a guaranteed market for their produce. Local production of clay stove liners is still continuing in the country. [1]

enablingenvironment

Steps in improving the enabling environment for clean cookstoves. [2]

The creation of an enabling environment for new businesses to enter the clean cookstoves market is another crucial role of governments in developing a clean cookstoves sector. The above image shows a number of pertinent steps that can be taken to do this. Starting at a consumer level, raising awareness of the benefits of a clean cookstove technology, through to allowing small and large businesses to access financing to scale their operations, and enabling credit facilities either through public or commercial banks, governments have the potential to significantly contribute to the ease of starting and maintaining a functioning private clean cookstoves market.

– Daniel Kerr, UCL Energy Institute

[1] Amerasekera, R.M. (2006) Commercialisation of improved cookstoves in Sri Lanka: A case study. Available at: http://www.inforse.org/Case/Case-SriLanka-Stoves.php3

[2] GVEP International (2012) Global Alliance for Clean Cookstoves Kenya Market Assessment, Sector Mapping. Available at: http://cleancookstoves.org/resources_files/kenya-market-assessment-mapping.pdf

The Clean Cookstoves Value Chain and Opportunities for Business

The value chain in private markets for clean cookstoves can broadly be categorised into production (either of full cookstoves or materials, such as ceramic liners), distribution and sales activities. For a prospective entrepreneur entering the clean cookstoves market, it is important to identify where business opportunities exist in the cookstoves value chain, and how to target these opportunities with specific business models.

Production of clean cookstoves is most commonly done by private market actors around the world. These companies take raw materials, such as clay or sheet metal, and form either complete cookstoves or cookstove components. Local producers, often clean cookstove product and fuel consumers themselves, feature heavily in the cookstove materials production market, with markets such as Sri Lanka relying on locally-produced clay liners for the dominant Anagi stove design in the country. Through early donor-led cookstove programs in the mid-1980s by organisations such as ITDG (Practical Action), over 200 potters and 2000 stove installers were trained, with over 400,000 stoves disseminated from 1985-1990. This led to a firm foundation for commercialisation and marketization of cookstoves technology. As of 2012, over 300,000 stoves were being produced annually, with 74 distribution companies active in the country [1] [2] [4]

anagistoveproducerMr. Thureirasa Ratnakumar, an ‘Anagi’ stove producer in Sri Lanka. Image: http://unhabitat.lk/news/promoting-energy-efficient-improved-cooking-stoves-for-better-health-in-the-north-of-sri-lanka/

Some distribution companies operate in an integrated fashion with other sectors of the market, such as being manufacturer and distributor or manufacturer and vendor. Generally cookstove products at a pre-distribution level are sold on a direct purchase basis to distributors or vendors, with little in the way of finance on a non-commercial loan basis.

Distribution companies in the cookstoves sector act as intermediaries between vendors and producers, but these activities can be integrated into a single company. Distribution of clean cookstoves is also commonly achieved with a direct purchase model, although costs can be high in distribution if operating outside of areas with suitable transport infrastructure, meaning that distributors negotiating favourable purchase terms with suppliers is not uncommon due to the high up-front costs of the business.

– Daniel Kerr, UCL Energy Institute 

[1] Amerasekera, R.M. (2006) Commercialisation of improved cookstoves in Sri Lanka: A case study. Available at: http://www.inforse.org/Case/Case-SriLanka-Stoves.php3

[2] World Food Program (2012) Sri Lanka: 50,000 Fuel Efficient Stoves Change Lives Of IDPs In The North. Available at: https://www.wfp.org/stories/50000-fuel-efficient-stoves-have-been-distributed-among-idps-north-sri-lanka

[3] BURN Cookstoves: About Us. Available at: http://www.burnstoves.com/about/

[4] [2] Rai & McDonald, GVEP International (2009) Cookstoves and markets: experiences, successes and opportunities. Available at: http://www.hedon.info/docs/GVEP_Markets_and_Cookstoves__.pdf

What Could the Energy Transition Be for Thermal Energy Services in the Global South

The STEPs project (Sustainable Thermal Energy Service Partnerships) funded by Dfid-DECC-EPSRC is about the design of public private partnerships for the provision of thermal energy services targeting the poorest in developing countries.  The STEPs research focuses on thermal energy services for households and small producers.  The following posts describe what the main needs are in terms of thermal energy services, and with which technologies they could be provided.

Households and small producers in developing countries have needs in terms of cooking, heating/cooling, refrigeration and drying which vary according to the geographical, socio-economic and cultural conditions found in their locations, and can be satisfied in a very different manner than in industrial countries.  Not only can the technologies used be different, but the entrepreneurial model which can help to disseminate these technologies is particular to the Global South: social entrepreneurs, cooperatives, informal groups or established small rural companies acting like utilities have to be involved.

The sustainability of their business models implies the need to find the right mix between different technologies and services provision adapted to the context they evolve in.

Cooking

Currently cooking in developing countries is mainly done using non-efficient cook stoves using traditional biomass (wood, charcoal) or fuels like coal or paraffin. More infrequently efficient cook stoves, bio-digesters or more rarely LPG (Liquefied Petroleum Gas) are used for cooking in rural areas.

Improved cook stoves have been tried to be disseminated for several decades now with mixed results. It seems cook stoves of all kind of shapes and made of all kind of materials have been conceived without being able to reach their intended market. Improved cook stoves fall broadly into two categories – cook stoves that use traditional wood fuels more efficiently, or cook stoves that use improved fuels such as unprocessed charcoal, briquettes or pelletised fuelwood.

600px-GIZ_Diversity_of_improved_cook_stoves_2011

A small selection of the diverse design options for clean cookstoves. Image credit: GIZ 

One of the aims of the STEPs project is to understand if public-private partnerships similar to the ones established for rural electrification could facilitate the dissemination on a very large scale of improved cook stoves. This is done by reviewing the (few) successful experiences of large-scale dissemination of improved cook stoves, for example the National Biogas Cookstoves Program (NBCP) in India (http://www.mnre.gov.in/schemes/decentralized-systems/national-biomass-cookstoves-initiative/), and determining how private business can take charge of the distribution and the marketing of improved cook stoves.

Another way of facilitating the energy transition in terms of cooking facilities is to encourage the use of LPG (Liquefied Petroleum Gas). LPG may not be a very low-carbon energy but it is considered a lot cleaner/less damaging for the environment and efficient than the use of traditional fuels. Unfortunately, the logistics of distribution in remote places makes it unaffordable for the poorest unless a program of subsidies is also implemented, which experiences show are difficult to target. For example, the Ghanaian LPG distribution and promotion program started in the 1990s, and continuing today, has experienced difficulties through cross-subsidising LPG, intended for cooking, through gasoline sales. This led to a rise in LPG transport use and conversions, particularly in urban taxis, skewing sales towards transport use and not rural cooking use as intended by the government program.

Bio-digesters can produce methane for cooking. This technology is widely disseminated in few countries like China or India, but not so much in sub-Saharan African countries. Various reasons have been invoked to explain this situation – low density of population/small size of holdings notably. It seems nevertheless than even if conditions may be less favourable in African countries than Asian countries, there could be specific services organised around collective use of bio-digesters (e.g. cooking in a school by collecting waste from a community).

There are two main approaches to household biodigester construction. The traditional technology is a dome-type biodigester, with the digesting chamber constructed from compacted earth or brick. These are cheap and easy to construct, but are prone to failure and require significant maintenance for good efficiencies. Modern household biodigesters are made from prefabricated plastic digesting chambers, which only require maintenance to maintain the digestion process, and are significantly more durable than the traditional type.

biodigester in cantonment

Biogas construction in cantonment (4971874669)” by SuSanA Secretariat – https://www.flickr.com/photos/gtzecosan/4971874669/. Licensed under CC BY 2.0 via Wikimedia Commons

africa biodigester

Prefabricated biodigester being installed in South Africa. Image: popularmechanics.co.za

agama biogas

Prefabricated biogas digester being constructed by AGAMA Bioenergy worker in South Africa. Image: Agama Biogas PRO via Youtube

Solar cooking and solar ovens are another technology that can be used for cooking in rural areas of developing countries. The Global South, and Sub-Saharan Africa in particular, generally has a good level of insolation for the use of solar technologies. Solar cooking technology however has struggled to find a foothold in Sub-Saharan African markets, and is at a low level of dissemination despite the maturity of the technology. A number of factors could be behind this, most notably the lack of convenience associated with solar cooking and the long cooking times and forward planning associated with using the technology.

ikiwaner solar oven 2008

A solar oven being demonstrated in Ghana. Credit: Ikiwaner / Licensed under CC BY 2.0 by Wikimedia Commons

– Xavier Lemaire & Daniel Kerr – UCL