Tag Archives: heating

Supporting Thermal Energy Services in Afghanistan

Binu Parthan from Sustainable Energy Associates writes on the growing support for thermal energy service considerations in Afghanistan.

Afghanistan is often in the news for the wrong reasons such as large swathes of migrants on European shores, armed conflicts, loss of life etc. However it is possible that the country might actually be implementing one of the most innovative energy services projects which has just started implementation with support from the STEPs team.

Decades of political instability and conflict has resulted in low levels of infrastructure access levels in Afghanistan. Over 57% of the Afghan population does not have access to electricity and 81% of the population does not have access to non-solid fuels (World Bank/IEA, 2015). The situation is dire in rural Afghanistan where only 4% of the population have access to non-solid fuels. Many such locations in Afghanistan are located in colder regions with more than 6000 HDDs/Year.

Afghan households use a Tandoor, a traditional cylindrical clay or metal oven for cooking and baking an efficient version of which is shown in the Fig. It is reported that 90% of cooking revolves around making bread called Naan, followed by potatoes. Houses also use a Bukhari, a traditional space heater for heating the living spaces in winter. Some of the traditional houses also have a Tawa Khana which circulates the hot combustion gases from the tandoor under the floor of the living room and releases to the outside through the opposite wall.

Households in Afghanistan use firewood, animal dung cakes, charcoal and shrubs for heating and cooking. Traditionally firewood and charcoal were purchased in rural Afghanistan but increasingly shrubs and animal dung cakes also have to be purchased. The thermal energy use of solid fuels also have their serious health effects, the annual number of pre-mature deaths from indoor-air pollution is estimated to be 54,000/Year (WHO, 2009). In comparison the civilian casualties in 2015 from the armed conflict in Afghanistan was 11,002 (UNAMA, 2016). The use of solid fuels are also a financial strain on the Afghan households as the average rural Afghan household spends over $ 90 on fuels of which only 12% is on kerosene/lighting with 88% on thermal energy. The prices of the solid fuels also increase by 15-25% during winter months as well.

efficienttandoor

An efficient Tandoor in Afghanistan. Image: COAM/Amy Jennings

Since late 2013, since the inception of the STEPs project, till late 2015, Sustainable Energy Associates (SEA), one of the partners have been working with the Ministry for Rural Reconstruction and Development (MRRD) in Afghanistan and UNDP to develop a project to address these rural energy and thermal energy challenges. These efforts have led to development of a new programme – Afghanistan Sustainable Energy for Rural Development (ASERD) which has business model and financial innovation at the core of the programme design and was finalised by SEA in late 2015. The project agreement was signed by MRRD and UNDP in late December 2015 and will be financed by the governments of South Korea and Sweden. The project will have a financial outlay of over US$ 50 million and will be implemented over 4 years during the period 2016-2019.

The ASERD programme plans to establish sustainable rural energy services in 194 rural communities in 4 years, providing both electrical and thermal energy services. The efforts will bring sustainable energy to over 19,500 households providing health, economic and social benefits. However the major contribution the programme will make to rural energy in Afghanistan would be to establish delivery models that are technology neutral, leverage additional local and international resources, mobilise communities, engage the private sector and financiers to establish a self-sustaining delivery model. The thermal energy service model which will be used by ASERD is shown in Fig.1.

afghanbinuimage2

Thermal Energy Service Model of ASERD. Image: Sustainable Energy Associates

Past rural energy programmes in Afghanistan have mainly relied on technology driven approaches which have focused on commissioning electricity generating equipment and transferring ownership, operation and utility management responsibilities to the communities. These efforts have also largely ignored the cooking and heating needs of rural population in a country which has cold winters. The opportunities to go beyond household energy to commercial, enterprise and public service use of energy have not been exploited or capitalised effectively. Similarly private sector and financial institutions have only played a limited role in the programme so far and the aspects of policy, regulation, standards and incentive frameworks have also not received considerable attention.

Against this backdrop, the ASERD programme seeks to graduate from the current approach to establish a technology-neutral, sustainable service delivery arrangement to provide thermal and electrical energy in rural areas of Afghanistan for household, social and productive needs. The programme will also provide energy in rural areas to seek agriculture productivity gains, rural enterprise development, income generation, community social empowerment and cohesion as well as to expand public service to improve access to better health, education and security in rural areas. To deliver these services in rural areas in a sustainable manner the programme will seek to engage the national utility and the private sector in addition to community mobilisation.

The programme will also develop capacities of the government agencies, civil society and the, private sector including the financial sector. ASERD will also create frameworks for policy and regulation, testing and quality assurance as well as will also pilot seven innovative energy service delivery models which will leverage skillsets and resources from communities, private sector and financial institutions some of which are linked to global financing mechanisms for climate change and energy. These models will also result in benefits to women and the marginalised nomadic Kuchi communities.

The design of ASERD has benefited from the learnings on thermal energy services offerings, key challenges and solutions gained by the STEPs project team which will now be used to support about 20,000 families in Afghanistan. SEA will be involved during the implementation of ASERD to support MRRD and UNDP.

– Binu Parthan, SEA

References

Conservation Organisation of Afghan Mountain Areas (COAM), 2012, Shah Foladi Village energy Use Survey

International Energy Agency (IEA) and the World Bank. 2015. “Sustainable Energy for All 2015—Progress Toward Sustainable Energy” (June), World Bank, Washington, DC. Doi: 10.1596/978-1-4648 -0690-2 License: Creative Commons Attribution CC BY 3.0 IGO

United Nations Assistance Mission in Afghanistan (UNAMA), 2016, ‘Civilian Casualties Hit a New High in 2015’ available at  https://unama.unmissions.org/civilian-casualties-hit-new-high-2015

United Nations Development Programme (UNDP), 2015, Project Document: Afghanistan – Sustainable Energy for Rural Development (ASERD)

World Health Organisation, 2009, Country profile of Environmental Burden of Disease: Afghanistan

“Fuel Switching” To LPG: Substituting More Sustainable Fuels

‘Fuel switching’ has achieved some prominence in the sustainable energy for development discourse. Fuel switching is usually used to define situations where end-users transition from less-sustainable traditional fuels, such as fossil fuels like kerosene or paraffin, or traditional woodfuels, to more sustainable sources of fuel used for the same purpose. For example, kerosene for lighting may be substituted for electric lighting from a solar home system, or woodfuels used for cooking or heating may be substituted for LPG.

Fuel switching has been particularly put forward when relating to LPG uptake in developing countries, as LPG fuel has significant benefits over other modes of fuel used for similar purposes. These can include superior combustion properties, producing less indoor air pollution with the attendant co-benefits in terms of public health. Fuel switching can lead to a reduced burden on the end-user for energy resource acquisition, such as alleviating the time burden of collecting woodfuels or purchasing charcoal/kerosene.

STEPs LPG Blog 1 Graph 1

Time spent collecting wood fuels per day by women in different African countries, 1990-2003, World Bank 2006. Source: http://ourworldindata.org/data/environmental-change/indoor-air-pollution/

Fuel switching (combined with the use of efficient cookstoves) can also lead to improved performance resulting from the use of a more energy-dense fuel, such as reduced cooking times.

STEPs LPG Blog 1 Graph 2

A comparison of different types of clean cookstoves and their relative energy consumptions and times to boil water. Source: http://www.lowtechmagazine.com/2014/06/thermal-efficiency-cooking-stoves.html

But fuel switching is not a one-way process where energy users switch to modern fuels and never come back to traditional fuels. Energy stacking is defined as when end-users in developing countries engage in multi-modal fuel usage depending on a variety of factors (e.g. variances in household income seasonally or over time), or utilising certain fuels for specific purposes (e.g. using kerosene for lighting and woodfuels for cooking).

Creating the incentive for a household, commercial enterprise or industry to engage in fuel switching can be challenging. The barriers to increased uptake of sustainable energy sources and more-sustainable energy equipment, such as solar home systems or LPG cooking apparatus, are well-documented [1] [2]. These can include higher costs for fuels, high initial investment costs putting systems/equipment out of reach of users, and problems with fuel availability, for example in distributing LPG fuels to remote rural areas.

These issues will be addressed in the next article in this series on the STEPs Blog, “Methods of Promoting LPG Uptake in Developing Countries”.

— Xavier Lemaire & Daniel Kerr, UCL Energy Institute, February 2016

[1] Pandey & Chaubal (2011) Comprehending household cooking energy choice in rural India. Biomass & Bioenergy, Vol. 35, pp. 4724 – 4731.

[2] Rai & McDonald (2009) Cookstoves and Markets – Experiences, Successes and Opportunities. Available at: http://www.hedon.info/docs/GVEP_Markets_and_Cookstoves__.pdf#

What Could The Energy Transition Be For Thermal Energy Services in the Global South – Part 3

Following our previous post on heating, this last post will investigate other energy service needs linked notably to farming activities.

Refrigeration/Drying

Refrigeration in developing countries in remote areas is rarely found except for specific needs like to keep vaccines for health centres. A number of possibilities exist to provide refrigeration with LPG, with passive solar, and again using ground-source heat pumps, but it seems solar PV is the most economical one. Various attempts have been made at renewable refrigeration over the past 30 years, predominantly focusing on solar collector designs, although photovoltaic vapour compression systems are the most commonly found for vaccine refrigeration. The high cost of these systems can often be justified by the importance of the application.

Larger refrigeration systems based on solar collection/kerosene/LPG power using different absorption refrigeration cycles (for example the Platen-Munters ammonia-water-hydrogen continuous diffusion absorption cycle) have been tested for ice-making in developing countries, but the lack of constant heat sources in renewably-powered systems has made reliability and efficiency a concern. Alternatives do exist to LPG-powered refrigeration in the form of solar refrigeration however, and with the current global lowering of photovoltaic and other solar components, the technology is becoming more cost-effective and viable to small entrepreneurs.

Immagine20

Platen-Munters absorption refrigeration system and cycle. Image – centrogalileo.it

Drying is to be found in agriculture, but not at a small scale for individual households. Tray design solar dryers can be useful for small agricultural businesses to increase productivity, and are often easy to construct from locally-sourced materials. Updraft-style solar dryers are more complex from a design perspective, requiring specific attention to be paid to air flows and moisture extraction from the heating areas.

ChiliSolarDryingPeru

Solar drying for chilli pepper crop in Peru, with locally-produced equipment. Image: Carlos Bertello, GIZ EnDev Peru.

Other Agricultural Uses

Milk pasteurisation is a critical issue for dairy farmers in the developing world. It has been estimated that over 50% of an average rural dairy farmer’s milk crop in Kenya will spoil before it has been sold, which has a severely detrimental effect on their livelihood and income generation. Modern pasteurisation equipment using steam boilers and batch-type pasteurisers can significantly increase output and income from a rural dairy farm in the developing world.

These steam boilers can be renewably powered, for example through biomass from animal/crop waste. Low-temperature (70-80°C) water can be substituted for steam in the pasteurisation process with only slight plant modifications, and this allows the potential for greater renewable energy use in the process, for example through flat-plate solar collector water heating, or cogeneration/recuperation from electricity generation or refrigeration equipment condensers. Whilst renewable pasteurisation technology has not been a focus of many organisations, the FAO have produced a report on the potential uses and processes for the technology, which is available here (http://www.fao.org/docrep/004/t0515e/T0515E03.htm).

ab91216d-ceb0-4448-b9ab-6728dda17027

Potential for novel pasteurisation technologies in the developing world, to be powered by renewable electricity from solar or biomass digesters. Image: Openideo, Sarah Rizk, Stanford University.

In conclusion of this series of three posts, there exists vast potential over the wide range of available thermal energy services for the residential, industry and commercial sectors, notably in the Global South in general, and Sub-Saharan Africa specifically. The STEPs project will specifically be working most on the services that appear most viable in the Sub-Saharan African context: cooking/heating services for household needs, and low-temperature hot water production for households. The need for sustainable cooking and household thermal energy is a pressing one, and the STEPs project, through investigating a technology-neutral approach to thermal energy services and business, hopes to address this need.

– Xavier Lemaire & Daniel Kerr – UCL

What Could The Energy Transition Be for Thermal Energy Services in the Global South – Part 2

Following our previous post on cooking, this post will investigate space and water heating/space cooling needs.

Space and water heating/space cooling

Heating can be an important source of energy consumption in a number of developing countries located far from the Tropics. This function is often associated with cooking, where a central heating point is used both to cook meals and heat the house. Bio-digesters in countries like China, India or Nepal have been able to provide heat on top of cooking.

Another energy service which is more widely used – even if often not considered as a priority – is domestic hot water which can be provided with a solar water heater. South Africa has some very large programmes of dissemination of solar water heaters, notably in townships. Half of the population of Barbados has a solar water heater. Solar water heaters are a mature technology, which can be easily manufactured locally and relatively cheaply, most of the time sold on a cash basis or with a consumer credit.

david monniaux 2005 swh

Solar water heater used in the Cirque de MafateRéunion. “Solar heater dsc00632”. Licensed under CC BY-SA 3.0 via Wikimedia Commons – http://commons.wikimedia.org/wiki/File:Solar_heater_dsc00632.jpg#/media/File:Solar_heater_dsc00632.jpg

Cooling renewable energy technologies are less available. For instance solar thermal cooling systems seem to exist mainly as large-scale technology; they tend to be complex to design and generally are quite costly. They are not considered in the STEPs project, which deals with the large-scale dissemination of medium scale collective or individual small-scale mature technologies.

Heat pumps imply dwellings of good quality with good insulation which is not a common occurrence in the case in poor communities.  Nevertheless ground-source heat pump could potentially be used at a larger scale (http://unu.edu/publications/articles/geothermal-energy-in-developing-countries-and-the-mdgs.html).

Insulation

Energy-efficient insulation and passive housing have traditionally been the preserve of developed nations (for example, the developed German passive housing technology sector). However, the potential for efficient insulation and space temperature management with locally-sourced, low-cost renewable materials has been realised in a number of countries, particularly in Sub-Saharan Africa. This includes both traditional methods for adapting households in temperate developing countries, such as cladding and thatch roofing, as well as the more modern concept of passive housing, where thermal energy inputs (for example, from the sun) are used as part of the building’s thermal energy regime, enabling a reduction in the use of air conditioning methods.

Traditional housing for example in Lesotho is adapted to the variable temperatures of the mountain climate the country resides in, with rondavels (traditional huts) having conical thatched roofs and daubed exterior walls for insulation against the often cold climate, and warm air retention.

Rondavel,_Gisela

By K. Kendall (originally posted to Flickr as Rondavel, Gisela) [CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)%5D, via Wikimedia Commons

Business model examples and projects for efficient insulation in developing countries are few and far between. For instance, the iShack project in Enkanini, an informal settlement in Stellenbosch, South Africa in partnership with the University of Stellenbosch, is predominantly a fee-for-service solar home system project, where users pay a small monthly fee on top of a fixed installation cost for small (50-80W) solar home systems. However, the organisation is also expanding into sustainable insulation and other household services, particularly sustainable wastewater treatment and household-scale biogas installations for cooking.

WP_20141119_16_33_19_Pro

Enkanini, Stellenbosch from the steps of the iShack hub. Image: Daniel Kerr

– Xavier Lemaire & Daniel Kerr – UCL

Side-Stepping the Energy Ladder

For decades now there has been talk of a hierarchy of energy use or ‘ladder’ which defined levels of development as well personal aspirations. Occupying the bottom of this ladder were primary fuels such as biomass, dung, etc. Moving towards the middle we had kerosene and LPG which were considered ‘modern fuels’ because of their comparative convenience as well as fairly sophisticated refining process associated with hydro-carbon fuels. And of course, at the top of the ladder was electricity, the most versatile and modern energy source of them all.

There have been many articles published about the energy ladder, some supportive of its clear albeit simplistic representation of how households progress in terms of fuel use while others have been more critical altogether of its rigidity and inability to accommodate variables such as culture,  differing socio-economic and geographic contexts. How this is playing out in South Africa today is quite interesting. Looking at South Africa’s energy policy, it is highly orientated towards developing the ‘top of the ladder’ options. Policy and regulations abound when it comes to nuclear, coal, large scale renewable, LPG gas, etc. But there is little regulatory interest when it comes to wood. Perhaps its posturing (Africa’s largest and most sophisticated economy requires nuclear not biomass regulations) or perhaps that’s the reality (the energy service activities are at the top of the ladder).

Despite this there are a number of inconsistencies emerging;

  • Electricity is becoming increasingly expensive (above inflation increases for over 5 years already with about the same to come) so many poorer households are having to ‘back-switch’ to LPG and paraffin.
  • Many middle class households that have been electrified for decades are opting to cook on LPG gas (on stainless steel hobs for sure) and heat their houses in winter using wood (up-market fireplaces).
  • Millions of households still cook with wood although they have access to electricity. The energy source is simply uneconomic to support the full range of thermal services households require.
  • High oil prices (think kerosene and LPG) and increasing electricity prices are putting strain on the ability of people to use fuels which they have access to. Access and utilisation have become two different issues
  • Political promises which have for decades reinforced the energy ladder now cannot be met as lower-income households cannot afford to utilise these fuels for all services required.
  • Department of Rural Development and Land Affairs has put out a tender for improved cookstoves, a technology that has never appealed to the Department of Energy because of the ‘poverty’ stigma associated with wood. Or, “people did not struggle [against Apartheid] to use wood” the former Minister of Energy [Dipuo Peters] once said to this blogger [African Minister’s Meeting, Sandton Convention Centre, Johannesburg, 17th September 2011].

Without significant subsidies, the lower-income households will find ascending the so called energy ladder increasingly difficult to achieve. The progressive notion of the ladder had much to do with the assumption that it was simply a matter of time before households, given broader economic growth, would progress up the ladder. However such economic growth hasn’t quite materialised and the associated costs of using these fuels has become increasingly exorbitant. Perhaps the middle-class should be used to assist in de-stigmatising the use of biomass fuels and the like which will at least assist in addressing some of the indignity associated with being trapped at the ‘bottom of the ladder’. Third generation improved cookstoves instead of open fires should go a long way in terms of doing just that.

– Robert Aitken, Restio Energy

Is LPG Part of the Problem or Solution?

Dr. Binu Parthan of SEA discusses the role LPG can play in household energy provision in developing countries:

When I discuss the use of Liquefied Petroleum Gas (LPG) as one of the technology options for cooking and heating at the household level in developing countries, it is often met with resistance. I have been challenged on the increased greenhouse gas emissions from introducing LPG into a biomass baseline, on introducing dependency on fuel supplies to areas which are self-sufficient and also introducing the dangers of market and price fluctuations to households with limited incomes.  All of these are valid concerns and should be addressed through the approaches.

I would like to view the indoor-air pollution in the developing country households as a health problem as well as an energy problem. Indoor air pollution from inefficient biomass burning results in pre-mature deaths of 2 million people in developing countries every year. Most of the rural areas I have been to, availability of biomass resources are decreasing and increasingly households have to purchase biomass at fluctuating market prices. In countries with space heating needs in winter such as Lesotho, the expenditure on solid fuels is significantly higher than what is spent by households on kerosene for lighting. So developing country households are already spending considerable share of their incomes on biomass purchases at market prices.

Now regarding increased emissions, if your baseline is biomass which is sourced from non-sustainable forests or woodland (as is often the case) the decrease in carbon stocks as a result of deforestation may offset most or part of the increased emissions from LPG use. Over the years I have seen a number of cookstoves and space heaters from solar cookers to, electric induction cookers efficient biomass stoves which should be all be promoted strongly But I believe LPG should also be part of the menu of options primarily However we should also work on regulatory frameworks for LPG to regulate pricing, have safety standards for stoves and require gas companies to retail small canisters to increase access by poorer households.

So I would encourage a healthier and cleaner thermal energy alternative for developing country households which are technology-neutral. The choice of which technology and fuel to use should be left to the households and users to decide.

– Binu Parthan, SEA

CIMG0262A traditional cook stove in Lesotho. Image: Sustainable Energy Associates

Thermal Energy Challenges in Rural Lesotho and an Opportunity to Leap to Modern Energy

Dr. Binu Parthan of SEA offers his thoughts on the thermal energy situation in rural Lesotho:

Lesotho is a land-locked country of over 30,000 km2 land area located in in southern Africa. The country with a population of over 2 million is one of the least developed countries with a low Human Development Index of 0.45 placing the country at 160 out of 185. Lesotho consists of highlands with altitudes ranging from 1400 m to 3400 m above sea level and is often called as the Roof of Africa. The country remains cooler than the surrounding region with average temperatures of 20⁰C in summer and -2⁰C in winter. Sesotho people live in traditional Rondavels and need energy for cooking and heating with 61% of the population however depends on solid fuels – firewood, shrubs, animal dung-cakes and crop residues for their thermal energy needs. In rural areas where 83% of households are located the dependence on solid fuels is significantly higher at 80%.  The modern sources available for cooking and space heating are LPG, Kerosene and Electricity the use of which is mainly confined to urban areas. The traditional and inefficient use of solid biomass fuels and the resultant indoor air pollution is also affecting the health of more than 1.6 million of the Sesotho with 200 annual deaths due to indoor-air pollution.

I had been working over the past year supporting UNDP and the Ministry of Energy Meteorology and Water Affaires (MEMWA) to scope and develop a new programme Lesotho Energy Alternatives Programme (LEAP) which will address electrical and thermal energy needs of the village in the country. The LEAP programme when implemented will establish Public-Private-Partnerships (PPP) managed by private operators in rural areas providing electrical and thermal energy to households. The village energy service providers will use a range of technologies -LPG cookstoves, efficient biomass cookstoves, LPG room heaters, efficient biomass heaters etc. through an energy service arrangement.  While the energy service arrangement for electricity is clearer, possible arrangements for thermal energy needs to be developed further. The LEAP upcoming programme in Lesotho provides a good opportunity for the STEPs project team to collaborate and support the piloting of models for thermal energy services delivery.

– Binu Parthan, SEA

CIMG0624A Sesotho woman, next to her Rondavel, her new LPG canister and old biomass stove. Image: Sustainable Energy Associates.