Solar Cooking and Energy Service Companies: An Unexplored Market Opportunity?

Solar cooking, as a technology and group of products, has existed for many decades, with examples being used in the 1970s. The technology in its simplest form has remained relatively unchanged since then, with the basic premise being either a flat or parabolic reflecting surface, placed in the sun, reflecting sunlight onto a cooking chamber. This can be either below the flat-plate reflector, or at the focal point of the parabolic collector. These types of devices are easy to manufacture and can be extremely cost-effective, with little more than a reflecting surface (for example, foil-backed card) and a cooking vessel needed for a minimum setup. These features give this technology particular applicability for targeting bottom-of-pyramid consumers with sustainability interventions: typical prices for simple designs (such as the flat-plate reflector shown below) range from US$3-5.

Solar box cooker made from carboard boxes and aluminium foil. Image: https://nakazora.files.wordpress.com/2011/06/solar-cooker1.jpg

Parabolic solar cooker in use at an informal settlement in Barcelona. Image: Brinerustle / Wikimedia Commons / CC BY-SA 3.0

 

A number of companies currently distribute simple kits for creating solar cookers from scratch, usually in the form of a reflective card template for the reflecting surface. However, these pre-packed kits are often more expensive than locally-sourcing materials for manufacture, ranging up to US$30-40, without offering meaningful benefits to the consumer aside from convenience. There are also a number of companies in developing countries that distribute full solar cookers to consumers using a direct-purchase business model, such as SunFire in South Africa and L’Obel Solar Power in India. Prices for these designs, commonly higher-quality parabolic mirror cookers, range up to US$200.

As such, it appears there is an opportunity for low-cost solar cooking business to develop markets for cheap, reliable solar cookers for bottom-of-pyramid consumers. In addition, through using alternative payment models for business, higher-cost designs can become more accessible to a greater number of consumers. Offering micro-credit products for deferred purchasing of solar cookers, or engaging with consumers on a fee-for-service basis with consumers paying a monthly fee for their product, would allow mid-range technologies to become accessible to consumers with lower incomes.

Other opportunities exist in the solar cooking market space for complimentary technologies, in particular heat-retention bags such as the Wonderbag from South Africa. This is designed to fit around the cooking vessel to retain heat and slow-cook the contents, after it has already been heated, reducing the overall energy requirement for cooking. Whilst this technology is perhaps most applicable to wood or charcoal-fired stoves, it can also help improve convenience when using solar cooking products. For example, rather than leaving a cooking vessel in the solar cooker for up to six hours, it can be left there for 1.5-2 hours, then transferred to the Wonderbag for further cooking.

For more information on the Wonderbag and use-case studies, please refer to https://samsetproject.wordpress.com/2017/04/10/energy-poverty-in-peri-urban-communities-in-polokwane-south-africa-part-1-identifying-the-issues/

— Daniel Kerr, UCL Energy Institute

References

Teach A Man To Fish (2009) Solar Cooker Business Guide. Available at: http://www.teachamantofish.org.uk/resources/incomegeneration/Solar-Cooker-Business-Guide.pdf

Gautam (2011) Microfinance Intervention for Financing Solar Cooking Technologies – Financing With Savings. Available at: http://www.microfinancegateway.org/sites/default/files/mfg-en-paper-microfinance-intervention-for-financing-solar-cooking-technologies-financing-with-savings-mar-2011.pdf

Solar Cookers International: CooKit. https://shop.solarcookers.org/?pn=CooKit&cn=Solar+Cookers&p=621&c=27

L’Obel Solar Power Systems: Solar Thermal Products: http://www.lobelpower.com/solar_thermal_product.htm

SunFire Solutions: http://www.sunfire.co.za/wp/

Wonderbag World: http://www.wonderbagworld.com/

Advertisements

Kitonyoni Solar Mini-grid and Integration of Thermal Energy Services

Binu Parthan from SEA writes on his recent visit to the Kitonyoni Solar Mini-Grid project, part of the University of Southampton’s efforts for the Energy for Development (E4D) project they lead.

The solar mini-grid at Kitonyoni near Machakos in Makueni County was financed by the UK government and commissioned in 2012 by the STEPs partner The Sustainable Energy Research Group at University of Southampton. The Kitonyoni Solar mini-grid is managed by Makueni County Solar Energy Co-op Society Ltd which is owned and managed by the community.

1

Management of the Solar Electric Cooperative and manager of the mini-grid business. Image: Sustainable Energy Associates

In July 2016, I travelled to Kitonyoni to visit the solar min-grid and meet with the community. While at Kitonyoni, I met with Joseph, Monicah, William and Shadrack from the management Makueni County Solar Energy Co-op Society Ltd and also with Stephen, the manager of the mini-grid and energy service business. With the community leaders and the manager of the mini-grid, I visited several businesses and households that were consuming electricity from the cooperative to understand the business model. The solar electric cooperative seems to be professionally managed and financially sustainable. They operate on a for-profit business basis and the financial accounts reveal that the operation is financially sustainable. The electricity cooperative uses a pre-paid card system for electricity sales and payments which seems to be working well. The electricity consumers are more conscious of energy use and payments and the cooperative is also happy with the upfront collections. The number of shops in the Kitonyoni market has significantly increased since the solar mini-grid was commissioned and the value of the land in the area has also almost tripled. However, the tariff charged by the solar electric cooperative is considerably higher than the public electricity utility but the community has been willing to pay a higher tariff due to better availability and reliability.

2

One of the new businesses established in the Kitonyoni market powered by the solar mini-grid. Image: Sustainable Energy Associates/span>

STEPs project team at University of Southampton had carried out a survey to examine the possibility of integrating thermal energy services into the existing electrical energy service business model. The results showed that 90% of the households in Kitonyoni use firewood for cooking which is available without cost to the community (Bahaj and Kanani, 2016). While the households spends over 5 hours to gather firewood, there is limited interest in switching to cleaner cooking options such as LPG which involve additional financial expenditure. The opportunity to integrate a solar thermal energy service along with the electricity service seems rather limited due to limited scope and demand for commercial fuels. The firewood is available freely in the area and LPG distribution networks are not available in the village.  Therefore currently, there does not seem to be a business case for introduction of an LPG franchise model and integrate the model into the solar electricity business. However some thoughts that I shared with the community were:

Since households and restaurants are cooking in separate rooms than their houses and as there is a preference for community schemes, will a community electric cooking scheme succeed? This may be relevant as on most days the battery bank of the solar mini-grid seems to be fully charged in the early afternoon and this could provide an opportunity for a central cluster of electric induction cookers which people can use to cook on a pay per use basis(similar to battery charging) to the cooperative.

It is possible that people may opt for efficient Cookstoves/Jikos if available on a hire-purchase/PAYG basis and reduce the amount of firewood to be collected resulting in time savings. An efficient Jiko will cost 45 $ which could be offered on a loan basis with daily/weekly/monthly payments to people by the cooperative for 6 months to 1 year tenure. These funds could be revolved over the time period to reach other members.

A differential tariff with a lower tier-tariff for the shops and establishments that use electricity during the day will likely improve the revenue model of the cooperative and can increase the utilisation levels. Such a tariff regime could allow the use of induction electric cookers at households during the day. Such a development could result in increasing sales and revenue and improving the business viability.

3

Cooking using firewood and a metallic stove in Kitonyoni. Image: Sustainable Energy Associates

Therefore the technology options for thermal energy and cooking in Kitonyoni is electric cooking or efficient Cookstoves with the possible business models of pay-per-use or hire-purchase respectively. A differential tariff with lower off-peak tariff could also allow electric cooking during the day time and improve the business model. These options are not entirely obvious and needs to be investigated and defined. This approach will certainly face stiff competition from free biomass availability and availability of free time for fire-wood collection.

Dr. Binu Parthan

Remembering Gill Owen

The STEPs project team would like to express our profound shock and disbelief at the passing away of Dr. Gillian Owen, Fellow at University College London. While Gill did not have a direct role in the STEPs project she was well known to all the STEPs project partners – Econoler, Restio, Southampton and SEA though the association of all organisations directly or indirectly with Renewable Energy and Energy Efficiency Partnership (REEEP) and its Sustainable Energy Regulators Network (SERN) which Gill established and lead. Xavier Lemaire and I met through Gill and SERN and it is plausible that the STEPs project would not have been developed except for SERN and Gill.

gillowenwfer1

Binu Parthan, Gill Owen and Gill’s husband David Green, World Forum on Energy Regulation, Athens, October 2009

I recall from my REEEP days that Gill was always the key voice on the role of energy regulation and energy regulators in promoting clean energy in developing countries.  Gill was probably the most active among REEEP advisers and she had built SERN with support from Xavier dividing her attention and time between the academic requirements at Warwick and the demands of keeping an international network operational. We developed the policy and regulatory toolkits for all countries with SERN which helped the REEEP’s search engine –Reegle attract much internet traffic. We also developed a regulatory toolkit with SERN and UNIDO which after over 10 years still remains relevant today. We also organised a very impressive event on energy regulation with Wilton Park where SERN and Gill played a pivotal role in setting the agenda and ensuring high-level participation.

I had always found Gill to be an active participant and a leader on issues relating to sustainable energy regulation. She had a large professional network of energy regulators and regulatory agencies who respected her views. She had always been a pleasure to work with and will be dearly missed by the STEPs team.

gillowenwfer2

Gill Owen, World Forum on Energy Regulation, Quebec City, May 2012.

So thank you Gill Owen for your highly valuable contributions highlighting the role of energy regulation in clean energy promotion in developing countries. I for one would not have grasped this key link except for Gill and SERN. Gill is probably responsible indirectly for the partnership that led to STEPs and we want to thank you for this opportunity as well. You will be dearly missed by all of us who knew you professionally.

Dr. Binu Parthan

Partnerships and Opportunities for Clean Cookstoves Support from Governments

This post aims to discuss where the opportunities may lie for governments and private sector organisations to enter partnerships for clean cookstoves market development. Both public and private sector actors have advantages and disadvantages in the approaches generally taken by such bodies in the clean cookstoves market space.

ghstakeholdersmap

Map of stakeholders in the clean cookstoves sector in Ghana. Image: http://cleancookstoves.org/binary-data/RESOURCE/file/000/000/311-1.pdf

Public-sector operations have the ability to achieve scale quickly and effectively, however are often lacking in terms of lasting presences in markets due to the financing models (direct dissemination, direct subsidy) used most commonly in these circumstances. These models tend to lead to consumers failing to maintain use of disseminated equipment, leading to a shrinking of the market presence for cookstoves technologies in the longer term. Private sector market actors, conversely, can take longer to achieve scale in their operations, and have to contend with acquiring financing, either through their operations or donors, to continue maintaining their market presence.

Hence, there are significant, proven opportunities for the combination of approaches. Public-private partnerships (PPPs) have the potential to alleviate the negative aspects of both public and private approaches, with private sector actors operating as delivery agents for overarching public-sector objectives, or public sector operators supporting the development of a functioning private market.

The development and marketization of the Sri Lankan clean cookstoves sector, with donor agencies, the state electricity agency, and private sector companies all collaborating to develop a functioning private cookstoves market, is a good example of how PPPs can achieve successful results in the clean cookstoves market context. Support from the Ceylon Electricity Board (CEB) in distributing clean cookstoves to their existing customers allowed the development of functioning private production enterprises across the country, with a guaranteed market for their produce. Local production of clay stove liners is still continuing in the country. [1]

enablingenvironment

Steps in improving the enabling environment for clean cookstoves. [2]

The creation of an enabling environment for new businesses to enter the clean cookstoves market is another crucial role of governments in developing a clean cookstoves sector. The above image shows a number of pertinent steps that can be taken to do this. Starting at a consumer level, raising awareness of the benefits of a clean cookstove technology, through to allowing small and large businesses to access financing to scale their operations, and enabling credit facilities either through public or commercial banks, governments have the potential to significantly contribute to the ease of starting and maintaining a functioning private clean cookstoves market.

– Daniel Kerr, UCL Energy Institute

[1] Amerasekera, R.M. (2006) Commercialisation of improved cookstoves in Sri Lanka: A case study. Available at: http://www.inforse.org/Case/Case-SriLanka-Stoves.php3

[2] GVEP International (2012) Global Alliance for Clean Cookstoves Kenya Market Assessment, Sector Mapping. Available at: http://cleancookstoves.org/resources_files/kenya-market-assessment-mapping.pdf

The Clean Cookstoves Value Chain and Opportunities for Business

The value chain in private markets for clean cookstoves can broadly be categorised into production (either of full cookstoves or materials, such as ceramic liners), distribution and sales activities. For a prospective entrepreneur entering the clean cookstoves market, it is important to identify where business opportunities exist in the cookstoves value chain, and how to target these opportunities with specific business models.

Production of clean cookstoves is most commonly done by private market actors around the world. These companies take raw materials, such as clay or sheet metal, and form either complete cookstoves or cookstove components. Local producers, often clean cookstove product and fuel consumers themselves, feature heavily in the cookstove materials production market, with markets such as Sri Lanka relying on locally-produced clay liners for the dominant Anagi stove design in the country. Through early donor-led cookstove programs in the mid-1980s by organisations such as ITDG (Practical Action), over 200 potters and 2000 stove installers were trained, with over 400,000 stoves disseminated from 1985-1990. This led to a firm foundation for commercialisation and marketization of cookstoves technology. As of 2012, over 300,000 stoves were being produced annually, with 74 distribution companies active in the country [1] [2] [4]

anagistoveproducerMr. Thureirasa Ratnakumar, an ‘Anagi’ stove producer in Sri Lanka. Image: http://unhabitat.lk/news/promoting-energy-efficient-improved-cooking-stoves-for-better-health-in-the-north-of-sri-lanka/

Some distribution companies operate in an integrated fashion with other sectors of the market, such as being manufacturer and distributor or manufacturer and vendor. Generally cookstove products at a pre-distribution level are sold on a direct purchase basis to distributors or vendors, with little in the way of finance on a non-commercial loan basis.

Distribution companies in the cookstoves sector act as intermediaries between vendors and producers, but these activities can be integrated into a single company. Distribution of clean cookstoves is also commonly achieved with a direct purchase model, although costs can be high in distribution if operating outside of areas with suitable transport infrastructure, meaning that distributors negotiating favourable purchase terms with suppliers is not uncommon due to the high up-front costs of the business.

– Daniel Kerr, UCL Energy Institute 

[1] Amerasekera, R.M. (2006) Commercialisation of improved cookstoves in Sri Lanka: A case study. Available at: http://www.inforse.org/Case/Case-SriLanka-Stoves.php3

[2] World Food Program (2012) Sri Lanka: 50,000 Fuel Efficient Stoves Change Lives Of IDPs In The North. Available at: https://www.wfp.org/stories/50000-fuel-efficient-stoves-have-been-distributed-among-idps-north-sri-lanka

[3] BURN Cookstoves: About Us. Available at: http://www.burnstoves.com/about/

[4] [2] Rai & McDonald, GVEP International (2009) Cookstoves and markets: experiences, successes and opportunities. Available at: http://www.hedon.info/docs/GVEP_Markets_and_Cookstoves__.pdf

Direct Dissemination (State Programs) vs Private Sector Models

This post, the second in our business models series, aims to explore the differences between state-led dissemination models and private-sector business models, both in terms of scalability, as well as affordability for consumer and the potential for developing sustainable markets and sustainable businesses.

There are a variety of business models that could be used to develop clean cookstoves businesses, which can broadly be categorised into three spheres: direct dissemination models, where the user receives a cookstove funded by an outside organisation (government, international donors etc.); vendor sales models, where consumers directly purchase a cookstove for a lump sum from a vendor, and micro-credit models, either delivered by vendors themselves or through dedicated micro-finance institutions. [2]

Vendor sales are the most common method of businesses interacting with end-users in the clean cookstoves sphere. These vendors either purchase cookstoves on a wholesale basis from producers or distributors, or are assisted by third-sector financing organisations to enable this purchase. BURN Cookstoves in Kenya, one of the largest integrated cookstoves companies in the country, uses a direct-sales model for its operations.

Micro-credit in the form of dealer credits are another common financing instrument used in vendor purchase models for clean cookstoves, allowing consumers to pay a periodic fee to progressively purchase a clean cookstove. Some vendors have clean cookstoves as their primary business, others use it as an additional income stream to a more traditional goods shop, or as another source of revenue in an energy service company business. For example, some solar home system concessions in South Africa, such as the Nuon-RAPS (NuRa) utility are using clean cookstoves to supplement their business with a smaller, secondary revenue stream, selling both cookstove equipment and fuels. NuRa uses sales of charcoal and ethanol gel cookstoves, as well as integrated fuel/hob LPG stoves, to supplement their main solar home system business.

The Kenyan clean cookstoves market is a good example of one that has transitioned from a direct dissemination model at a donor/state scale to a private-sector led distribution and sales model. Donor/development agency-led clean cookstoves programs in Kenya date back to the 1980s, and designs used in the initial deployment phase, such as the Kenya Ceramic Jiko (KCJ), have become staple designs of the market. Charcoal stoves however are still the predominant cookstove type used in Kenya, with estimates that 47% of the population use some form of charcoal stove, rising to 80% in urban areas such as Nairobi. Global Alliance for Clean Cookstoves estimates put the size of the market at 2.5-3 million households using some form of clean cookstove in 2012. As of February 2016, the GACC is continuing to work with partners such as the Clean Cooking Association of Kenya (CCAK) and other governmental and non-governmental organisations, to disseminate 5 million improved cookstoves by 2020.

kcj
Ceramic Jiko stove, often referred to as the Kenya Ceramic Jiko. Image: AFREPREN

The cookstove market is fragmented in Kenya, with the majority of cookstove production done on a small to medium scale. Distribution costs can be high because of this, and with a poor road network in some areas, it becomes more feasible for wholesale buyers to collect directly from producers. Cookstoves are sold through a combination of dedicated retailers and traditional vendors, with wholesale buyers acting as further distribution agents to demand centres. [1]

There are a number of reasons why private-sector models can have advantages over state/donor-led dissemination. The Kenyan market relies on private provision of cookstoves from manufacturers at a local level, with vendors purchasing cookstoves wholesale to be sold later. Whilst this can increase costs to end users due to multiple markups in the value chain, offering micro-finance at a vendor level allows vendors to access wider segments of the consumer market, allowing people who could otherwise not afford a cookstove outright the chance to progressively purchase one. Scalability and flexibility are also advantages to private-sector dissemination, with multiple opportunities across the value chain for businesses depending on local consumer preferences and material availabilities. [3]

The next post in this series will explore the concept of the clean cookstoves value chain further, and identify where potential business might be sited within this value chain.

– Daniel Kerr, UCL Energy Institute

[1] GVEP International (2012a) Global Alliance for Clean Cookstoves Kenya Market Assessment, Sector Mapping. Available at: http://cleancookstoves.org/resources_files/kenya-market-assessment-mapping.pdf

[2] Gaul (2009) Subsidy schemes for the dissemination of improved stoves. Experiences of GTZ HERA and Energising Development. Available at: http://fsg.afre.msu.edu/promisam_2/references/Gaul_2009_Stove_Subsidies.pdf

[3] SNV (2015) ICS Business Toolkit, Starting, Managing and Growing an Improved Cook Stoves Business in Uganda. Available at: http://snv.org/en/countries/uganda/publications/snv-uganda-integrated-cookstove-business-toolkit

Clean Cooking Technologies and Dissemination: Growing Markets

Clean cookstoves, also known as improved cookstoves (ICS) have the potential to significantly change patterns of household and institutional energy use in developing countries. However, access to clean cookstoves for consumers in developing countries remains low, despite high levels of fuel use appropriate to cookstoves being prevalent in developing countries, particularly in rural areas.

cookstovegraph1

Share of population using solid fuels with access to improved cookstoves in Developed Countries (DCs), Least Developed Countries (LDCs) and Sub-Saharan Africa (SSA) [1]

The use of clean cookstoves has the potential to improve livelihoods, particularly for women and children, in developing countries through alleviating the time burden of gathering fuel, allowing users to spend more of their time on other activities, for example income generation. Daily collection of firewood for cooking can vary in duration from 3 hours [7] to seven hours [8]. Clean cookstove technologies such as rocket stoves can achieve the same cooking results, in the same time, while using just 60% of the fuel [8]. Global Alliance for Clean Cookstoves research has shown that traditional cookstove-using households in India, Bangladesh and Nepal on average spend 660 hours/year on fuelwood collection, while improved cookstove households spend just 539 hours/year [9]. Indoor air quality improvements are another key benefit. Around 3.8 million premature deaths annually are caused by non-communicable diseases, such as heart diseases and lung cancer that can be attributed to indoor air pollution [3].

Removing poorly-combusting, high-smoke fuels such as traditional wood fuels from the household energy mix in developing countries, and reducing indoor air pollution consequently, would have huge positive consequences for public health in the developing world.

Clean cookstoves technologies tend to be demarcated on the type of fuel used, as well as the general design of the cookstove and its technological aims. These cookstoves can also be demarcated through cost, with lower-cost cookstoves made from clay or metal with a clay lining, and higher-cost stoves using factory-machined materials like metals. Differences in cost tend to lead to different target market, with low-cost cookstoves targeting rural consumers, and higher-cost cookstoves focusing on emerging middle classes and high-income employees. Costs for a household clean cookstove can range from US$10 to US$350+, and as such different business models are required to disseminate these stoves to best reach their target markets. High-cost stoves are most commonly directly sold to consumers, whereas low-cost stoves can be available through government or donor programs of dissemination, as well as through direct purchase, vendor-credit or micro-credit models. [4] [6]

stovetech-combined-wood-charcoal-ics

Stovetech combined wood/charcoal improved cookstove. Source: http://inhabitat.com/four-cooking-stove-designs-that-can-save-the-world/

Solid fuel cookstoves, for example cookstoves using traditional woodfuels, tend to aim for significantly more efficient combustion of fuels, reducing indoor air pollution in the form of smoke and particulate matter, as well as generating more heat. These efficient designs can focus on combusting fuel more effectively, through designing combustion chambers to allow for more aerobic combustion, whereas others focus on having a heavily-insulated cooking chamber to reduce heat loss, focusing on longer cooking times for the same amount of fuel. Other cookstove designs for developing countries focus on using more efficient fuels with low-cost technology. Some examples of this include efficient charcoal stoves, as well as LPG stoves designed for developing country use.

cookstove-blog-table-1

Lab efficiencies of various established cookstove designs used in the developing world. Table established by D. Kerr derived from http://catalog.cleancookstoves.org/test-results, with standards available online at: http://cleancookstoves.org/technology-and-fuels/testing/protocols.html

However, lab efficiencies do not always translate into real-world efficiencies. A recent Indian cookstoves study conducted by researchers at the University of Washington and the University of British Colombia found disparities in real-world use efficiencies in a recent CDM program of cookstove dissemination from the Indian government. Particulate matter emissions especially were higher than expected, which may have been due to the ‘stove-stacking’ phenomenon, where families continue to use traditional cookstoves after receiving an improved cookstove. Some 40% of households in this study were found to be doing this [5].

Dissemination of clean cookstoves, and growth in access to the technologies, has the potential to have a significant positive impact on the sustainability of energy use and improvement of livelihoods of consumers in developing countries. Whilst state-run programs have had some success in directly distributing clean cookstoves, market-based measures have been shown to have significant impacts over the medium-long term, and private cookstove markets have developed in a number of Sub-Saharan African countries, such as Kenya, South Africa and Uganda. Markets across the world have disseminated large numbers of cookstoves, with over 12 million disseminated in China in the 2012-2014 period, 4.5 million in Ethiopia, and nearly 3 million in Cambodia [12]. The Kenyan clean cookstoves market was sized at 2,565,954 units in 2012, with high levels of urban and peri-urban penetration (~35%), but significantly less rural coverage [10]. The Ugandan market by comparison is estimated to be around 600,000 households, with urban areas again dominating this group [11].

This series of posts aims to explore the variety of models that private businesses can use to achieve scale and sustainability in their operations in the clean cookstoves sector [2]. Direct dissemination will be compared to vendor purchase, vendor credit and micro-credit models in the second blog of this series. Post three will explore the clean cookstoves value chain and identify opportunities for business growth along the value chain, and the fourth post in this series will examine the role of government in promoting clean cookstoves businesses.

– Daniel Kerr, UCL Energy Institute

[1] Bazilian et al. (2011) Partnerships for access to modern cooking fuels and technologies. Current Opinion in Environmental Sustainability, Vol. 3, pp. 254 – 259.

[2] Rai & McDonald, GVEP International (2009) Cookstoves and markets: experiences, successes and opportunities. Available at: http://www.hedon.info/docs/GVEP_Markets_and_Cookstoves__.pdf

[3] WHO Website (2016) Household air pollution and health.  Available at: http://www.who.int/mediacentre/factsheets/fs292/en/

[4] Global Alliance for Clean Cookstoves (2016) Clean Cooking Catalog.  Available at: http://catalog.cleancookstoves.org/stoves

[5] University of Washington (2016) Carbon-financed cookstove fails to deliver hoped-for benefits in the field. Available at: http://www.washington.edu/news/2016/07/27/carbon-financed-cookstove-fails-to-deliver-hoped-for-benefits-in-the-field/

[6] Global Alliance for Clean Cookstoves (2016) Business and Financing Models., Available at: http://carbonfinanceforcookstoves.org/implementation/cookstove-value-chain/business-models/

[7] FAO (2015) Running out of time: The reduction of women’s work burden in agricultural production. Available at: http://www.fao.org/3/a-i4741e.pdf

[8] GACC (2015) The Use of Behaviour Change Techniques in Clean Cooking Interventions to Achieve Health, Economic and Environmental Impact. Available at: https://cleancookstoves.org/binary-data/RESOURCE/file/000/000/369-1.pdf  

[9] GACC/Practical Action (2014) Gender and Livelihoods Impacts of Clean Cookstoves in South Asia. Available at: https://cleancookstoves.org/binary-data/RESOURCE/file/000/000/357-1.pdf

[10] GVEP/GACC (2012) Kenya Market Assessment: Sector Mapping. Available at: https://cleancookstoves.org/binary-data/RESOURCE/file/000/000/166-1.pdf

[11] GVEP/GACC (2012) Uganda Market Assessment: Sector Mapping. Available at: http://cleancookstoves.org/resources_files/uganda-market-assessment-mapping.pdf

[12] REN21 (2016) Renewables Global Status Report. Available at: http://www.ren21.net/wp-content/uploads/2016/06/GSR_2016_Full_Report_REN21.pdf