Building a Sustainable Market for Biodigesters in Vietnam – SNV World/EnDev

Since 2003, SNVWorld, with funding from the Netherlands Ministry of Foreign Affairs (DGIS), have been working to develop the biogas and biodigester sector in Vietnam. SNV to date have been providing technical assistance and developing financial capacity in conjunction with the country’s Ministry of Agriculture and Rural Development, with the Department of Livestock Production under the MARD acting as the implementing partner for the project. Vietnam is particularly suitable for the development of biodigester technology, given the high prevalence of livestock farming and the large heads of animals present in the country. In 2016, over 26 million pigs were raised in the country, and utilising the waste products from this livestock farming can provide significant benefits to the economy, as well as sustainability objectives. As of March 2017, the project has installed over 150,000 biodigesters in the country, with a further 80,000 having been installed under spin-off projects implemented by the MARD.

The project has not only focused on installations, but has sought to develop the capacity for a functional, self-sustaining market for biodigester technology in the country. To that end, as of March 2017 the project has created over 2,500 new jobs in rural areas of the country, and trained over 1,700 masons in the construction of biodigesters. The consumer-side has also been targeted by the project, with over 160,000 households receiving both pre-installation training on the use of biodigesters, and post-installation training on the maintenance of the digester chamber and the use of bio-slurry in agricultural applications.

Dome-type biodigester in rural Vietnam. Image: SNVWorld

One of the innovative measures used to assist in developing a sustainable biogas sector in the country was implemented by the NGO EnDev in partnership with SNVWorld and the MARD. The NGO has recently implemented a Results-Based Financing (RBF) scheme in the country to promote the acceleration of biodigester construction, through empowering the supply-side of the biogas market to keep up with demand through subsidy. A financial incentive is provided for the construction and verification of each new biodigester, starting at US$50 for each new digester and falling over time. The intention is that the suppliers who receive this incentive can then reinvest the extra income in attracting more staff and scaling their businesses. The verification system is implemented through a novel online application developed in partnership with SNVWorld and AVKO, combining input data, photos and GPS locations translated to maps that are automatically updated with new information from the field. This system has replaced the traditional hard-copy form submission system for verification of new installations, streamlining the process for both EnDev and installers. The system is currently in use by 146 active installers in 18 provinces in Vietnam, and to date has verified over 35,000 biodigester installations.

In terms of capacity-building, SNV are currently partnering with MARD to continue the training of government installation and verification partners to build capacity in the biodigester sector, in an effort to better support a viable, private-sector supply and distribution market. Government technicians are also being trained in communicating about benefits of biogas technology, supporting enterprises in identifying suitable households and providing them with extension services on the use of bio-slurry.

– Daniel Kerr, UCL

References

SNVWorld (2018) Vietnam Biodigester Programme. Available at: http://www.snv.org/project/vietnam-biogas-programme [Accessed 11th March 2018]

Teune (2017) Igniting a Self-Sustaining Biogas Market in Vietnam. Available at: http://www.snv.org/update/igniting-self-sustaining-biogas-market-vietnam [Accessed 11th March 2018]

Partnerships for Women’s Economic Empowerment through Clean Energy in Senegal

Access to energy in rural areas of Senegal is a persistent issue. Electrification rates in rural areas of the country can be as low as 4%, and over 89% of the population are still reliant on biomass fuels for thermal energy uses in the home, such as cooking. However, a number of barriers exist to addressing this situation, particularly for female entrepreneurs in the region: other commitments such as domestic work can hamper the amount of time available to establish a business, and technical, financial and organisational capacity is often low. Two non-profit organisations, ENERGIA and Energy4Impact, are partnering with local women entrepreneurs in rural areas of the country to improve energy access and reduce the burdens of unsustainable fuel use on families.

Energy 4 Impact with Women Entrepreneurs in Tambacounda, Senegal. Photo: Judith Quax, July 2017

In the rural Tambacounda region of the country, ENERGIA and Energy4Impact have been training women entrepreneurs to become sales agents for small solar home systems, solar lanterns and improved cookstoves. The organisations have taken an “eco-system” approach to the training, attempting to address the wide range of business, financial, capacity and gender-related barriers to developing women’s energy entrepreneurship as a whole. This has included partnerships with local manufacturers and suppliers to enable access to technologies, as well as business and financial training for entrepreneurs, and sensitising campaigns in the local area to enable homeowners to realise the benefit of engaging with women in the energy product space.

Currently, Energy 4 Impact is supporting 160 women entrepreneurs in Tambacounda to become sales agents of improved cookstoves and solar lanterns. From 2016 to 2017, these entrepreneurs sold 1,132 solar lanterns and 822 efficient biomass cookstoves, helping over 17,000 people access clean thermal energy.

However, the engagement in Senegal by the two non-profit organisations is not solely for the purpose of entrepreneur training. Co-benefits of improved energy access in the business space are also targeted. This is particularly being realised in improved access to solar refrigeration technologies for small-scale agri-businesses. Energy4Impact are partnering with two government organisations to offer technical training for women entrepreneurs in the agri-business sector to use solar refrigeration technologies to diversify their business. The NGO also engaged with private-sector suppliers of equipment to suggest suitable technologies scaled to the size of the women’s business needs. In addition, the NGO also engaged with agri-business owners directly to design and manage credit line mechanisms for leasing solar-powered technologies that could be repaid in instalments, enabling access to technologies on a monthly credit basis applicable to the entrepreneurs’ income.

Finally, the NGOs are partnering directly with women entrepreneurs in the Tambacounda region to offer small solar home systems on an innovative pay-as-you-go basis. This is being conducted in partnership with Boabab+, a social enterprise focusing on PAYG models for solar home systems and solar lanterns. Women entrepreneurs are being trained as distribution agents for the products, and can purchase solar home systems from the enterprise with a 25% down-payment, with the remaining 75% being repaid in three fortnightly instalments with zero interest. Clients are able to access one month’s electricity upon purchase of the system, with further payments able to be made on a daily, weekly or monthly basis through mobile money systems already existing in the region. This gives consumers the flexibility to pay for energy when they need it at a price point appropriate for them, while reducing the economic barriers for entrepreneurs to enter the sector through offering this flexible credit mechanism. The system has proven fairly successful: one entrepreneur in partnership with a local women’s group sold 152 solar lamps from 2016-2017, where they ordinarily would not have had the capital to even begin investing in the technology for sale.

– Daniel Kerr, UCL

References

ENERGIA (2018) Helping women entrepreneurs scale-up rural supply chains to reach last mile markets. Available at: http://www.energia.org/helping-women-entrepreneurs-scale-rural-supply-chains-reach-last-mile-markets/ [Accessed 11th March 2018]

Energy4Impact (2018) Empowered women securing energy access in rural Senegal. Available at: https://www.energy4impact.org/news/empowered-women-securing-energy-access-rural-senegal [Accessed 11th March 2018]

Energy Access in Uganda – The Effect of PAYG Models on Adoption

UNCDF’s Clean Start Programme, in conjunction with SolarAid/Acumen and the Schatz Energy Research Centre (SERC), are currently conducting a research project in Uganda based on identifying whether innovative financing models, such as pay-as-you-go (PAYG), can enable higher levels of access to renewable energy technologies, as well as the “solar ladder hypothesis”. This hypothesis states that users who gain access to solar energy technologies will then continue to adopt higher levels of technology to further improve their energy access over time, continuing to use solar technology whilst doing so. Some sources reject the solar ladder hypothesis, and suggest that low-income households can “leapfrog” to higher levels of solar energy access directly if appropriate financing mechanisms are made available, and this project aims to investigate whether the hypothesis holds true in the face of innovative end-user financing for solar energy technologies.

This project exists under the purview of the UNCDF’s co-investment initiatives in innovative and novel financing mechanisms and business models for off-grid energy access. In Uganda, the organisation is particularly promoting energy service company models offering asset financing for users, using a digitally-enabled pay-as-you-go model through proven mobile money technologies. The technologies used in this project are well-proven, such as small portable solar lanterns, and small- and large-scale solar home systems. The substitution of solar energy for unsustainable fuels is demonstrated well by the research so far: 55% of respondents to the 600 phone interviews and 114 face-to-face interviews conducted by the project to date say they have completely substituted fuels such as kerosene and dry-cell batteries, as well as services such as paid mobile phone charging, with solar energy use.

Of particular interest to the research conducted under the STEPs project, however, is the demonstration that PAYG models offer significant benefits over traditional financing and purchasing models, such as cash-purchase or deferred-purchase. The PAYG model investigated under the Ugandan research has led to households with lower incomes being able to afford proportionally-larger systems: household incomes for purchasers of small-scale solar home systems under the PAYG model were comparable to those who were outright purchasing portable solar lanterns, with the model enabling a higher level of access.

Entrepreneur and solar home system purchasers in Uganda. Image: Goyal, Jacobsen & Gravesteijn (2017)

However, whilst the PAYG model enables users to access higher levels of service immediately, it does not have any effect on the payback period for the larger systems. Net-present-value analysis conducted under the project suggested that whilst solar lantern outright purchasers paid back their initial costs quickly, small- and large-scale solar home system users experienced a net cash outflow for the warranty period of their systems, in the region of $130-$740 per year depending on system size. This suggests that economic concerns are possibly lower on the priority list of users than previously thought in other projects, and that levels of service may be more important to users than initially suspected. The project conclusion on this point is that adopters of small- and large-scale solar home systems make the purchases to achieve quality-of-life improvements, rather than as an economic investment.

In addition, the research so far has suggested that the introduction of mobile money systems as a method for both payments for systems and savings for users has been equally adopted throughout household income scales. This suggests that potential co-benefits of a PAYG model when targeting poorer consumers, such as improving financial inclusion and money-saving access through the mobile payments scheme, may not be realised in actuality, given the equal adoption across household income levels. However, an encouraging sign is that mobile savings are being used by a very large proportion of the respondents to the research: 83%. In addition, new systems such as the MoKash savings option launched by mobile money pioneers MTN in Uganda recently may further increase this proportion.

– Daniel Kerr, UCL

References

Goyal, Jacobsen & Gravesteijn (2017) Spotlight: Does PAYGO unlock energy access and financial inclusion? Available at: https://spark.adobe.com/page/iGBgXjIQIGG9F/ [Accessed 11th March 2018]

UNCDF (2018) UNCDF CleanStart. Available at: http://www.uncdf.org/en/cleanstart [Accessed 11th March 2018]

Taita Taveta County, Kenya – Biogas Partnership for Farming Communities

Taita Taveta county lies approximately 150km northeast of Mombasa and 300km southeast of Nairobi in Kenya. Residents of Wundanyi subcounty were approached in 2013 by a newly-formed NGO, Taita Biogas, to pilot new biogas installations, due to the high prevalence of cattle farming in the region. This gives ready availability for high-quality feedstock for biogas digesters in the form of cattle manure. To date, the NGO has installed over 600 household-scale biodigesters in the country, and has completed two institutional biodigesters for schools in the region, with a third under construction. These institutional-scale installations will use human and food wastes as feedstock rather than cattle wastes.

The business model for the NGO provides an opportunity for consumers who would not be able to afford a biodigester installation outright to install a system. Taita Biogas covers half of the cost of installation, and also arranges contractors to construct and commission the system. The households then pay the remaining amount for installation, usually in the region of KSh145,000 (GBP1,035). In recent years the NGO has expanded operations through partnership with the Micro Enterprise Support Project, another Kenyan NGO supporting farmers venturing into macadamia nut and French bean farming. Whilst this partnership has not been successful to date, due to MESP pulling out in 2017, a new partnership with the organisation is to be formed with additional funding, and a loan finance option provided through the MESP to members for biogas installations.

Household biodigester user Honorata Nyange cleaning utensils at her Lushangonyi home in Taita Taveta County, Kenya. Photo/Malemba Mkongo, star.co.ke

There are a range of benefits available to the farmers who have installed these biogas systems, as well as the institutional-scale digesters installed by regional schools. Households have reported a huge reduction in the amount of money and time invested in collecting firewood and purchasing charcoal, and the institutional users have reported a 50% reduction in the cost of purchasing firewood for cooking since installation of the digesters. In addition, this scheme is innovative in that householders are coordinating with the NGO to apply for regulatory permission from the Energy Commission of Kenya to bottle and sell biogas on the local market, as self-producers. Biogas sells for comparable prices to natural gas on the Kenya market (KSh200/kg (GBP1.43/kg), compared to KSh175-250 (GBP1.25-1.78/kg) for natural gas), and should regulatory permission be granted, these biogas installations have the potential to become an additional revenue stream for the farmers. Finally, household users have reported significant improvements in both cooking quality and ease of use when using biogas compared to firewood or charcoal, with a reduction in combustion residues and ease of lighting when using biogas as a fuel source.

The NGO is currently expanding its operations both on a geographical and technology-focused scale. As well as its operations in Kenya, the NGO is conducting feasibility studies for joint biogas/solar photovoltaic/solar water heater applications in Ethiopia, as well as local training workshops in partnership with an Ethiopian NGO, MCMDO-REESDE, for solar water heating technology, both in terms of installation and local construction.

– Daniel Kerr, UCL

References

Star.co.ke (2017) Taita Taveta Dumps Firewood for Biogas. Available at: https://www.the-star.co.ke/news/2018/02/12/taita-taveta-dumps-firewood-for-biogas_c1707691 [Accessed 10th March 2018]

Taita Biogas (2018) What We Do. Available at: http://biogas-taita.de/home.php [Accessed 10th March 2018]

Thermal Energy Services and Technology Neutrality

Dr Binu Parthan from Sustainable Energy Associates writes on technology neutrality in thermal energy services, and how this can approach can be used to further access to clean thermal energy.

When the STEPs project was conceived in late 2012 and early 2013, one of the key aspects we emphasised was the principle of technology neutrality. We thought it important to include all possible energy conversion and end-use technologies that can provide thermal energy for cooking, space heating and other household, commercial and industrial uses. We were always clear about the role of LPG as a thermal energy fuel and technology to be included. This was also one of the arguments we used to encourage a technology neutral approach to thermal energy to the projects eventual funders DfID and EPSRC. Once the research project started in early 2014 the role of electric cooking also emerged slowly as an option worth considering. During the global survey we carried out during 2014-15 it emerged that electricity was already being used for thermal purposes by some practitioners in several operating contexts. In early 2015, I visited the Mekar Sari cooperative at the Cinta Mekar 5P project in Indonesia to understand the workings of the 5P model – a blog about this visit available here. During this visit I came across the extensive use of electric rice cookers which were being used alongside LPG. Almost all houses in Cinta Mekar was using efficient rice cookers to prepare rice and keep it warm.

A Household at Cinta Mekar, Indonesia Cooking with an Electric Rice Cooker (Credits: Sustainable Energy Associates)

The questions around electric cooking started recurring again during 2015. In mid-2015, at the Asia Clean Energy Forum at ADB in Manila where we presented the STEPs model, there were some interesting discussions about the need to include all possible technologies for cooking, including LPG and electricity. Later in 2015, DfID and Evidence on Demand published three interesting reports on electric cooking using solar photovoltaics and batteries in the African context. One of these publications (Leach and Oduro, 2015) also highlighted that majority of cooking is being using electricity in advanced African countries such as South Africa. Later in 2015 while I was in Nepal I realised that electric cooking option was already promoted by Intermediate Technology (Now renamed Practical Action) over 25 years ago in the 1990s with micro-hydro projects in a village called Ghandruk. The project used electric storage cookers – Bijuli Dekhchis for electric cooking in Ghandruk. The experience with electric cooking in Nepal did not turn out to be a success and perhaps was an idea ahead of time. My efforts to contact the people who ran the project to learn from their experience with the technology wasn’t successful as many of them had moved on or retired.

Rice Cooker and Electric Kettle being used by Households at Barpak in Nepal (Credits: Bir Bahadur Ghale)

There has also been questions raised regarding the health benefits of efficient cookstoves such as the reduction of pulmonary diseases due to reduced indoor emissions from improved cookstoves. LPG based cooking offers significant indoor emission reductions and electric cooking produces no indoor pollution at all. A publication in the Lancet in late 2016, which was highlighted by the BBC seemed to indicate no significant health benefits as a result of efficient biomass stoves (Mortimer. 2017).  I also see a renewed interest in electric cooking again especially with the availability of electromagnetic induction cookers which are available at lower prices of about US$ 20 in many locations in the developing world. Efficiency of rice cookers have also improved and many of the efficient rice cookers now use electro-magnetic induction. Induction cookers are about 14% more efficient than ordinary electric cookers and are increasingly available globally at competitive prices.

In this context, I heard about Bir Bahadur Ghale, owner of Barpak Rural Electrification Pvt. Ltd in Nepal – a community owned mini-grid operated by micro-hydro. After several efforts and with support from Dipti Vaghela at the Micro-Hydro Power Network, I was able to meet with Bir in December 2016.  The experience of Barpak Micro Hydro with electric cooking has been quite impressive. The mini-grid powered by hydro has offered a lower off-peak tariff from 8 AM to 5 PM encouraging households to cook with electricity during this period. These efforts resulted in about 2/3rd of the 1200 households served by the 133 kW hydro system now using electric cooking during the day. In addition the Barpak hydro also offers lower tariffs to industries during the day time, to encourage the use of electricity for productive uses. These efforts have resulted in the utilisation levels in the Barpak hydro to increase to 47% or 0.47 Plant Load Factor (PLF) which is almost 3 times the levels seen in similar hydro powered mini-grid systems in Nepal and elsewhere. Bir believes that the convenience of electric cooking, low-cost of cookers, reduction in drudgery of collecting firewood and the low off-peak tariffs offered by the Barpak hydro has been the reason behind the uptake of electric cooking. I believe this is a good approach which is valid in many locations around the world which addresses indoor air pollution, deforestation, provide a convenient and modern cooking alternative to households, especially women and improve the business viability of mini-grid operations. I am also beginning to notice more and more electric cooking appliances as I travel and recently in Laos I even see a shop which is specialising in electric cooking. So this market segment is getting quite interesting indeed with more product offerings that are affordable.

Electric Cooking Appliances for sale in Vientiane, Laos (Credits: Sustainable Energy Associates)

Also in a recent visit in summer of 207 to a village in the Ayeyarwady delta in Myanmar electrified by a gasifier powered mini-grid, I was able to see the widespread use of electric rice cookers and electric frying pans on a regular basis in homes. What was interesting was that despite the high local electricity tariffs at $ 0.44/kWh, the households preferring electric cooking to biomass based cooking.

Electric Cooking in rural Myanmar (Credits: Sustainable Energy Associates)

As more un-electrified areas get electrified and as cost of cooking with firewood and charcoal increases, we would expect LPG and electricity to increasingly displace biomass stoves. Where conditions for promotion of LPG exist such as local availability of natural gas, existence of LPG distribution networks, government programmes that offset the cost of access (like in Indonesia) etc. we are likely to see increased uptake of LPG. However many countries to do have domestic natural gas reserves and establishing a nation-wide LPG distribution network is capital intensive and government finances are often stretched. Therefore there is a tendency for LPG distribution networks to be limited to urban areas where there is a high concentration of users. Electric induction cooking can be an alternative in rural and decentralised areas which are electrified where products such as induction cooktops and electric rice cookers are available in the markets. With the right regulatory instruments that ensure tariffs that encourage electric cooking and electric space heating and with efficient and low-cost induction cooking devices, the share of electric cooking in developing countries will increase. While this does not call for shifting the focus away from efficient biomass cookstoves, the option of electric cooking needs to be in the menu of options for practitioners, development agencies and enterprises active in the energy access space. We will also need to think in terms of programme frameworks, financing, policy & regulation that promotes efficient electric cooking alongside LPG, efficient biomass stoves and other options.

Dr. Binu Parthan

References

Matthew Leach and Richard Oduro 2015, Preliminary design and analysis of a proposed solar and battery electric cooking concept: costs and pricing, Evidence on Demand, DOI: http://dx.doi.org/10.12774/eod_cr.november2015.leachm

Mortimer, K et al, 2017, A cleaner burning biomass-fuelled cookstove intervention toprevent pneumonia in children under 5 years old in rural Malawi (the Cooking and Pneumonia Study): a cluster randomised controlled trial, Lancet, 389: 167–75

Pay-As-You-Go (PAYG) Models for Cooking Fuels – Innovation for the Poorest Consumers

Daniel Kerr from UCL writes on innovative pay-as-you-go models in use for cooking energy service provision.

In the last 2-3 years, a handful of thermal energy services companies in the developing world, specifically in Sub-Saharan African countries, have begun to take advantage of pay-as-you-go (PAYG) consumer financing models in their energy businesses. These models have significant advantages in comparison to direct purchase, hire-purchase or micro-credit models when dealing with the poorest consumers in societies, for example those living in informal settlements in urban or rural areas. Some companies are taking advantage of these models for selling clean cooking products, such as stoves themselves, whereas others are using this payment structure for cooking fuels.

One company in Kenya taking advantage of these innovations is KOKO Networks. This organisation seeks to offer an integrated neighbourhood-level clean cooking solution with smart technology, via their KOKO points, cloud-connected commerce hubs where consumers and vendors can come to refill the products on sale or make purchases. Currently the company is offering the SmartCook product at these sales points, which is a two-burner clean cookstove with an integrated fuel canister. The fuel used is marketed as Mafuta smart, which is an ethanol fuel derived from molasses manufacture.

What is particularly innovative about this system is that the sales hubs for the company have in the automated purchasing stations for the fuel for the cookstove system. These dispensers refill the provided fuel canister (known as a kibuya smart canister) with the cookstove system, and customers can refill their canister from as little as KHS30 (US$0.29) at a time, offering significant flexibility for the consumer, without the “poor people’s premium” (higher per-unit prices charged for small amounts of consumable products) seen in other commodities. The company operates on a concession business model, with interested parties either setting up their own fuel supply arrangements for the fuel to service their settlement, or purchasing equipment and fuels from KOKO themselves.

KOKO Networks KOKOPoint in store in Nairobi. Customers can purchase a stove or replacement fuel from the kiosk. Image: http://www.globalhearthworks.org/koko/

Other companies in Kenya are taking advantage of PAYG models to enable greater access to their products and services as well. In Nairobi, PayGo Energy is a distribution service for LPG fuels that is using pay-as-you-go services to bring LPG fuel access to a greater number of consumers. The service begins with the installation of an LPG stove, cylinder and smart fuel meter in the home. This smart meter is at the core of the service the company offers, as it automatically communicates to the company when the fuel level is running low, whereupon the company arranges delivery of a replacement, full cylinder to the household. In addition, the system support mobile payments and ordering of fuel replacements, allowing customers to purchase as little as a day’s worth of LPG (around US$0.50) at a time. This logistics system has been adapted to informal settlements, allowing uninterrupted supply to households in informal settlements via motorcycle.

Other organisations are beginning to see the benefits of integrating mobile payment technology with a pay-as-you-go fuel payments model for energy services. KopaGas in Tanzania are another company using smart LPG metering to minimize the challenges posed by last-mile distribution which are typical in providing thermal energy services to communities. This smart gas meter system allows the company to deliver cylinder filling services or replacement full cylinders to communities efficiently, minimising distribution costs. In addition, the company offers a pay-as-you-go service for LPG fuel, as well as offering pay-over-time services for both fuels and cooking equipment. KopaGas has been partnering with EnviroFit, an established LPG equipment and fuel distributor in East and West Africa, in order to scale their service reach.

Through these cases, the market opportunity for offering clean cooking fuels and technologies as an energy service, using innovative fuel and equipment payment models to enable access for the widest range of consumers, can be clearly demonstrated. KOKO Services and KopaGas/PayGo Energy may be using different technology options, but the commonalities in approach exist: offering consumers the ability to purchase small amounts of fuel at a time, via a convenient payment method (either via mobile, at a central filling station, or both), and in the case of the LPG companies, offering consumers the option of household delivery. Through this combination of factors, these companies are breaking the traditional barriers to household thermal energy service delivery, allowing consumers who previously would not have had the financial capacity to afford modern cooking fuels the ability to access these technologies.

– Daniel Kerr, UCL Energy Institute

References

Global Alliance of Clean Cookstoves (2017) “Pay-as-you-go” technology to boost access to cooking fuel. Available at: http://cleancookstoves.org/about/news/05-30-2017–pay-as-you-go-technology-to-boost-access-to-cooking-fuel.html

KOKO Networks Home: http://kokonetworks.com/

PayGo Energy Home: https://www.paygoenergy.org/

KopaGas Home: https://www.kopagas.com/

Solar Water Heating as an Energy Service – Part 1 – Technology Choices and Markets

Solar water heaters as a product have the potential to contribute considerably to energy demand reduction in developing countries. This exists both as a household-scale technology, and in industrial applications such as desalination in countries such as the UAE and Saudi Arabia, and industrial process heat in both developed and developing countries. A number of developing countries around the world, notably those in Sub-Saharan Africa, have had success in disseminating solar water heating products on a commercial basis, in addition to a number of large-scale government dissemination programs. Countries such as South Africa (with around 500,000 systems installed as of 2016) and China (which has over 85 million installed SWH units as of 2016) have developed a robust network of commercial installers and manufacturers of solar water heating units and parts, selling products on a market basis to households and businesses.

Solar water heater installed by ESKOM, South Africa. Image: gmourits, Flickr, via http://inhabitat.com/eskom-installs-solar-powered-heaters-on-south-african-roofs/

 

There are a number of opportunities in developing country markets to develop a solar water heating sector. A number of developing countries, particularly those in Sub-Saharan Africa, have high levels of insolation (sunlight kWh/m2/day), and a consistent demand across income segments of the population for water heating. Industrial process heat is another sector where solar water heating could have an impact, as is institutional process heat, for example heat exchangers for hospital refrigeration, and hot water for use in health centres and schools.

Entrepreneurs and companies looking to enter the solar water heating market space need to consider a number of questions before starting their operations. Firstly, an appropriate technology choice is essential for succeeding in the SWH market, perhaps more so than many other renewable energy technologies. Deciding which consumer segment or income bracket to target informs the technology decision somewhat, but thorough research needs to be done on what the market and consumers can afford before deciding on a technology. Main technology streams for SWH include flat-plate solar collectors, and evacuated tube solar collectors. Both work on similar principles, heating water that passes through the collector, either through capillary action or through the use of an electric pump. Flat-plate collectors can be slightly less efficient than evacuated tube designs due to heat loss through convection, however they are also less expensive and simpler to produce. Evacuated tube designs are generally more efficient at heating water, but are also more expensive to compensate for the increased complexity in manufacture.

Flat-plate solar collector installed on a house in the United Kingdom. Image: uk.solarcontact.com

Flat-plate solar collector efficiency vs evacuated tube efficiency at various temperature ranges for a typical North American location. Source: https://blog.heatspring.com/solar-thermal-flat-plate-or-evacuated-tube-collectors/

 

When designing a new solar water heating business or intervention, therefore, it is important to consider which variant on the technology is to be used, and at what scale (household, institutional, industrial etc.), in order to plan dissemination based on affordability for the consumer. The next blog in this series will investigate business and financing models that can assist in improving the sustainability and replicability of solar water heating energy service companies.

– Daniel Kerr, UCL Energy Institute

References

Clean Technica (2015) World’s Largest Solar Powered, Jellyfish-Fightin’ Desalination Plant To Be Built in Saudi Arabia. Available at: https://cleantechnica.com/2015/01/22/worlds-largest-solar-powered-desalination-plant-under-way/

Urban, Geall & Wang (2016) Solar PV and solar water heaters in China: Different pathways to low carbon energy. Renewable and Sustainable Energy Reviews, Vol. 64, pp. 531 – 542

EE Publishers (2016) Solar water heater rollout programme gains momentum. Available at: http://www.ee.co.za/article/solar-water-heater-rollout-programme-gains-momentum.html

Solar Cooking and Energy Service Companies: An Unexplored Market Opportunity?

Solar cooking, as a technology and group of products, has existed for many decades, with examples being used in the 1970s. The technology in its simplest form has remained relatively unchanged since then, with the basic premise being either a flat or parabolic reflecting surface, placed in the sun, reflecting sunlight onto a cooking chamber. This can be either below the flat-plate reflector, or at the focal point of the parabolic collector. These types of devices are easy to manufacture and can be extremely cost-effective, with little more than a reflecting surface (for example, foil-backed card) and a cooking vessel needed for a minimum setup. These features give this technology particular applicability for targeting bottom-of-pyramid consumers with sustainability interventions: typical prices for simple designs (such as the flat-plate reflector shown below) range from US$3-5.

Solar box cooker made from carboard boxes and aluminium foil. Image: https://nakazora.files.wordpress.com/2011/06/solar-cooker1.jpg

Parabolic solar cooker in use at an informal settlement in Barcelona. Image: Brinerustle / Wikimedia Commons / CC BY-SA 3.0

 

A number of companies currently distribute simple kits for creating solar cookers from scratch, usually in the form of a reflective card template for the reflecting surface. However, these pre-packed kits are often more expensive than locally-sourcing materials for manufacture, ranging up to US$30-40, without offering meaningful benefits to the consumer aside from convenience. There are also a number of companies in developing countries that distribute full solar cookers to consumers using a direct-purchase business model, such as SunFire in South Africa and L’Obel Solar Power in India. Prices for these designs, commonly higher-quality parabolic mirror cookers, range up to US$200.

As such, it appears there is an opportunity for low-cost solar cooking business to develop markets for cheap, reliable solar cookers for bottom-of-pyramid consumers. In addition, through using alternative payment models for business, higher-cost designs can become more accessible to a greater number of consumers. Offering micro-credit products for deferred purchasing of solar cookers, or engaging with consumers on a fee-for-service basis with consumers paying a monthly fee for their product, would allow mid-range technologies to become accessible to consumers with lower incomes.

Other opportunities exist in the solar cooking market space for complimentary technologies, in particular heat-retention bags such as the Wonderbag from South Africa. This is designed to fit around the cooking vessel to retain heat and slow-cook the contents, after it has already been heated, reducing the overall energy requirement for cooking. Whilst this technology is perhaps most applicable to wood or charcoal-fired stoves, it can also help improve convenience when using solar cooking products. For example, rather than leaving a cooking vessel in the solar cooker for up to six hours, it can be left there for 1.5-2 hours, then transferred to the Wonderbag for further cooking.

For more information on the Wonderbag and use-case studies, please refer to https://samsetproject.wordpress.com/2017/04/10/energy-poverty-in-peri-urban-communities-in-polokwane-south-africa-part-1-identifying-the-issues/

— Daniel Kerr, UCL Energy Institute

References

Teach A Man To Fish (2009) Solar Cooker Business Guide. Available at: http://www.teachamantofish.org.uk/resources/incomegeneration/Solar-Cooker-Business-Guide.pdf

Gautam (2011) Microfinance Intervention for Financing Solar Cooking Technologies – Financing With Savings. Available at: http://www.microfinancegateway.org/sites/default/files/mfg-en-paper-microfinance-intervention-for-financing-solar-cooking-technologies-financing-with-savings-mar-2011.pdf

Solar Cookers International: CooKit. https://shop.solarcookers.org/?pn=CooKit&cn=Solar+Cookers&p=621&c=27

L’Obel Solar Power Systems: Solar Thermal Products: http://www.lobelpower.com/solar_thermal_product.htm

SunFire Solutions: http://www.sunfire.co.za/wp/

Wonderbag World: http://www.wonderbagworld.com/

Kitonyoni Solar Mini-grid and Integration of Thermal Energy Services

Binu Parthan from SEA writes on his recent visit to the Kitonyoni Solar Mini-Grid project, part of the University of Southampton’s efforts for the Energy for Development (E4D) project they lead.

The solar mini-grid at Kitonyoni near Machakos in Makueni County was financed by the UK government and commissioned in 2012 by the STEPs partner The Sustainable Energy Research Group at University of Southampton. The Kitonyoni Solar mini-grid is managed by Makueni County Solar Energy Co-op Society Ltd which is owned and managed by the community.

1

Management of the Solar Electric Cooperative and manager of the mini-grid business. Image: Sustainable Energy Associates

In July 2016, I travelled to Kitonyoni to visit the solar min-grid and meet with the community. While at Kitonyoni, I met with Joseph, Monicah, William and Shadrack from the management Makueni County Solar Energy Co-op Society Ltd and also with Stephen, the manager of the mini-grid and energy service business. With the community leaders and the manager of the mini-grid, I visited several businesses and households that were consuming electricity from the cooperative to understand the business model. The solar electric cooperative seems to be professionally managed and financially sustainable. They operate on a for-profit business basis and the financial accounts reveal that the operation is financially sustainable. The electricity cooperative uses a pre-paid card system for electricity sales and payments which seems to be working well. The electricity consumers are more conscious of energy use and payments and the cooperative is also happy with the upfront collections. The number of shops in the Kitonyoni market has significantly increased since the solar mini-grid was commissioned and the value of the land in the area has also almost tripled. However, the tariff charged by the solar electric cooperative is considerably higher than the public electricity utility but the community has been willing to pay a higher tariff due to better availability and reliability.

2

One of the new businesses established in the Kitonyoni market powered by the solar mini-grid. Image: Sustainable Energy Associates/span>

STEPs project team at University of Southampton had carried out a survey to examine the possibility of integrating thermal energy services into the existing electrical energy service business model. The results showed that 90% of the households in Kitonyoni use firewood for cooking which is available without cost to the community (Bahaj and Kanani, 2016). While the households spends over 5 hours to gather firewood, there is limited interest in switching to cleaner cooking options such as LPG which involve additional financial expenditure. The opportunity to integrate a solar thermal energy service along with the electricity service seems rather limited due to limited scope and demand for commercial fuels. The firewood is available freely in the area and LPG distribution networks are not available in the village.  Therefore currently, there does not seem to be a business case for introduction of an LPG franchise model and integrate the model into the solar electricity business. However some thoughts that I shared with the community were:

Since households and restaurants are cooking in separate rooms than their houses and as there is a preference for community schemes, will a community electric cooking scheme succeed? This may be relevant as on most days the battery bank of the solar mini-grid seems to be fully charged in the early afternoon and this could provide an opportunity for a central cluster of electric induction cookers which people can use to cook on a pay per use basis(similar to battery charging) to the cooperative.

It is possible that people may opt for efficient Cookstoves/Jikos if available on a hire-purchase/PAYG basis and reduce the amount of firewood to be collected resulting in time savings. An efficient Jiko will cost 45 $ which could be offered on a loan basis with daily/weekly/monthly payments to people by the cooperative for 6 months to 1 year tenure. These funds could be revolved over the time period to reach other members.

A differential tariff with a lower tier-tariff for the shops and establishments that use electricity during the day will likely improve the revenue model of the cooperative and can increase the utilisation levels. Such a tariff regime could allow the use of induction electric cookers at households during the day. Such a development could result in increasing sales and revenue and improving the business viability.

3

Cooking using firewood and a metallic stove in Kitonyoni. Image: Sustainable Energy Associates

Therefore the technology options for thermal energy and cooking in Kitonyoni is electric cooking or efficient Cookstoves with the possible business models of pay-per-use or hire-purchase respectively. A differential tariff with lower off-peak tariff could also allow electric cooking during the day time and improve the business model. These options are not entirely obvious and needs to be investigated and defined. This approach will certainly face stiff competition from free biomass availability and availability of free time for fire-wood collection.

Dr. Binu Parthan

Remembering Gill Owen

The STEPs project team would like to express our profound shock and disbelief at the passing away of Dr. Gillian Owen, Fellow at University College London. While Gill did not have a direct role in the STEPs project she was well known to all the STEPs project partners – Econoler, Restio, Southampton and SEA though the association of all organisations directly or indirectly with Renewable Energy and Energy Efficiency Partnership (REEEP) and its Sustainable Energy Regulators Network (SERN) which Gill established and lead. Xavier Lemaire and I met through Gill and SERN and it is plausible that the STEPs project would not have been developed except for SERN and Gill.

gillowenwfer1

Binu Parthan, Gill Owen and Gill’s husband David Green, World Forum on Energy Regulation, Athens, October 2009

I recall from my REEEP days that Gill was always the key voice on the role of energy regulation and energy regulators in promoting clean energy in developing countries.  Gill was probably the most active among REEEP advisers and she had built SERN with support from Xavier dividing her attention and time between the academic requirements at Warwick and the demands of keeping an international network operational. We developed the policy and regulatory toolkits for all countries with SERN which helped the REEEP’s search engine –Reegle attract much internet traffic. We also developed a regulatory toolkit with SERN and UNIDO which after over 10 years still remains relevant today. We also organised a very impressive event on energy regulation with Wilton Park where SERN and Gill played a pivotal role in setting the agenda and ensuring high-level participation.

I had always found Gill to be an active participant and a leader on issues relating to sustainable energy regulation. She had a large professional network of energy regulators and regulatory agencies who respected her views. She had always been a pleasure to work with and will be dearly missed by the STEPs team.

gillowenwfer2

Gill Owen, World Forum on Energy Regulation, Quebec City, May 2012.

So thank you Gill Owen for your highly valuable contributions highlighting the role of energy regulation in clean energy promotion in developing countries. I for one would not have grasped this key link except for Gill and SERN. Gill is probably responsible indirectly for the partnership that led to STEPs and we want to thank you for this opportunity as well. You will be dearly missed by all of us who knew you professionally.

Dr. Binu Parthan